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INTRODUC TION

This is a final report on Contract No. NAS8-I1264, Research in the

General Area of Non-Linear Dynamical Systems, covering the period June 8,

1965 through June 8, 1967.

In Section I a brief account is given of the research completed which

was supported in part by this contract. In almost all instances a more

detailed account of this research can be found in the papers and reports

contained in the Appendix. The numbers in square brackets ([ ]) appearing in

the text refer to the papers and reprints in the Appendix.

In Section II some areas for future research which we feel are of

importance and worth further investigation are indicated.

The Appendix contains all of the papers and reports that have been

prepared to date on this research. Some of the papers have already been

published and references to their publication are given. In other cases the

papers have been accepted or submitted for publication and the journals in

which they are to appear are noted.
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RESEARCH COMPLETED

i. Control theory

One of the main theoretical tools used to consider feedback controls

is the Hamilton-Jacobi equation. The major difficulties in applying this

technique are discontinuities in controls and large dimensionality. An approxi-

mation technique to overcome the first difficulty has been studied by Hermes in

several papers ; in particular "The equivalence and approximation of optimal

control problems", J. Diff. Eqs._ V01. i, No. 4, 1965 and "Attainable sets and

generalized geodesic spheres", J. Diff. Eqs., Vol. 3, No. 2, 1967. The latter

paper (see [ i], Appendix), incorporating results of the former, studies properties

of the set of attainability (or reachable set) for a class of nonlinear control

problems formulated as contingent equations.

The attainable set _(t) is defined as the set of all states attain-

able at time t, from a fixed initial state x , by trajectories of the controlo

system using all possible controls. Particular emphasis is placed on the study

of the boundary of _(t), denoted 8 _(t). A trajectory is an extremal if it

satisfies the conditions of the maximum principle. The set S(t) of points

attainable by extremals at time t (i.e. the geodesic sphere of radius t) is

studied in relation to 8 _(t). It is shown that 8 _(t) C S(t) for all t __O.

(The advantage is that S(t) is easier to compute). Under appropriate assump-

tions and for t sufficiently small, these sets are equal and S(t) is an

imbedded sphere. As t increases S(t) may become an immersed sphere, in

which case the degree of its Gauss map remains one. Also, as t increases one

may encounter conjugate points, in which case S(t) ceases to be immersed.

Other properties and several examples are given in the paper.

I
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A further effort in the application of functional analytic methods in

control theory has been carried out by Hermes. This has resulted in the paper

entitled "On the closure and convexity of attainable sets in finite and infinite

dimensional spaces"_ scheduled to appear in Vol. 5, No. 3, SIAM J. on Control.

(See[2], Appendix.) Here, the role of the weak topologies in the Filippov

existence conditions is shown, together with some preliminary results which

consider the admissible controls as a given set of functions_ rather than the

usual case of specifying only the values a control may assume at a given time.

In many ways_ the former may be the more practical problem when one has a

limited set of function generators.

2. Stability of systems defined over a finite time.

In cooperation with L. Weiss a comprehensive study of the stability of

systems defined over a finite time interval was completed. The theory follows

essentially the viewpoint of the Direct Method of Liapunov and was motivated

by two purposes: the desire to bring the physical concept of stability within

a mathematical framework similar to the definitions of Liapunov, and the hope

of easing the difficult task of constructing Liapunov functions. The large

majority of physical systems operate or are observed for only finite periods

of time; yet the definitions of stability of Liapunov are based on the assump-

tion that it is possible to observe a system for an infinite time. Secondly,

the stability definitions of Liapunov do not correspond precisely to the intui-

tive concept of stability for dynamical systems. The principal purpose of the

work of Infante and Weiss was to define a stability concept which would circum-

vent these two objections and to establish a set of theorems that parallels
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The results of this investigation can be

3. Stability of a singular point of a control system.

In the theory of control systems for which the mathematical model

is a system of differential equations

: f(x,u(x)): F(x),

x is an n-vector (the error in control), u is the control law and is a

function on Rn to Rr , and f is a function on Rn+r to Rn It is

often possible, using Liapunov theory (or, equivalently, dynamic programming)

to determine control laws that stabilize the system. If the origin is an

equilibrium point, then one has stability in the sense of Liapunov and the

error x(t) _ 0 as t_.

In many cases, however, one obtains control laws that reduce the

error to zero in finite time. The control then must be discontinuous at the

origin, and the origin is a singular point and is not an equilibrium state.

Liapunov's definitions and his classical theorems have no meaning here, and it

seems worth while to extend the definitions of stability and the basic Liapunov

theorems to cover the stability of singular points. LaSalle has done this and

from it has obtained sufficient conditions for optimal control. A brief account

of this has appeared in notes prepared by LaSalle on lectures he gave last

summer on control theory.

. An extension of Liapunov's Direct Method. An invariance principle for

ordinary differential equations.

LaSalle has completed a unification and extension of Liapunov's



-4-

Direct Method for the study of the stability systems defined by ordinary

differential equations. The theory shows first of all why the study of the

stability of nonautonomous (time-varying) systems is inherently more difficult

than that of autonomous (stationary) systems. What is exploited in this new

theory is the invariance property of the limit sets of solutions of autonomous

systems. This makes possible the introduction of a more general concept of

a Liapunov function and in terms of such Liapunov functions there is one

fundamental theorem that includes all of the classical Liapunov theorems on

stability and instability as well as more recent extensions of those theorems.

Besides giving a complete unity to the theory and identifying the

essential nature of a Liapunov function, this new theory has also some practical

consequences. Here Liapunov functions are not, for instance, required to be

positive definite and this means that the class of suitable Liapunov functions

is greatly enlarged and this eases the problem of constructing Liapunov functions.

Examples show that rather precise information about asymptotic stability cam

be obtained by functions which are not positive definite. This also makes

application easier for outside of quadratic forms we have no computable criter-

ion for determining when a function is positive definite.

Of more significance may also be the fact that this new theory for

ordinary differential equations has already guided Hale in providing an ade-

quate stability theory for functional differential equations (delay differential

equations ; for example, see Hale, J., Sufficient conditions for stability

and instability of autonomous functional differential equations, J. Diff. Eqs. l,

452-482 (1966)) and Hale and Infante in their search for a stability theory

for partial differential equations. (See paragraph 6 below and [6] in Appendix).

For a more complete account of this research see [4] and [5], Appendix.
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A complete paper on this subject is being prepared for publication.

5. An invariance principle for difference equations with applications to

numerical analysis.

Hurt developed a theory of stability similar to paragraph 4 above

for difference equations. To illustrate the application of this theory he

derived a region of convergence for the Newton-Raphson and secant iteration

methods. A modification of one of these theorems is also given and is applied

to study the effect of round-off errors in the Newton-Raphson and Gauss-Seidel

iteration methods. The theory is also used to derive a well-known necessary

and sufficient condition that spectral radius of a matrix be less than one.

This theory should also have applications to the study of the stability of

sampled data systems. See [16], Appendix.

6. An invariance principle for partial differential e_uations and

_eneralized dynamical systems.

For dynamical systems described by functional differential equa-

tions and partial differential equations the state space is no longer, as is

the case for ordinary differential equations_ a finite dimensional Euclidean

space but is an infinite dimensional function space. This raises the diffi-

culty of compactness (bounded sets are not necessarily compact nor is the

space locally compact) and there is also the additional difficulty that solu-

tions while unique in the future may not be unique in the past. This means

the flow in state space defined by solutions will not in general define a

group of motions but only a semi-group. It is for these reasons that the

stability theories for "generalized" dynamical systems (Zubov, and Auslander

and Seibert_ for example) have failed to be satisfactory for either functional

I
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differential or partial differential equations. Zubov came closest but seems

neither to have been aware of an "invariance principle" nor did he solve the

difficulties concerning the notion of limit sets and their invariance.

Hale and Infante have overcome these difficulties and achieve an in-

variance principle for generalized dynamical systems that yields satisfactory

stability theory with broad applications. Furthermore, this general theory

makes it possible to bring to bear on these problems the well developed con-

cepts and theorems about Sobolev spaces. A publication will appear shortly

on this subject. A preliminary version of this paper is included in the

Appendix_ [6].

7. Stability of linear time-varyin_ systems.

A considerable amount of work has been devoted during the past ten

years to the study of the stability of nonlinear systems. Much less effort

has been expended on the study of the stability of systems whose parameters

vary with time in an imprecisely known manner. Infante has considered two

different types of problems along this line. In one_ stability conditions

are obtained for a linear system with time-varying coefficients under the

assumption that the range of the magnitude of these coefficients is known.

The results obtained generalize the well-known circle criterion. In a second

problem it is assumed that the expectation of the value of the coefficients is

known and stability conditions are obtained by imposing restrictions on the

expectations of the variations of the coefficients. The techniques used in

this second problem are equally applicable to stochastic and to deterministic

problems. The results of these investigations have partly appeared in one

publication (see [7], Appendix) and further results have been submitted for a
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second paper (see [8], Appendix).

8. The theory of matroids with applications to electrical network theory.

A complete exposition of the application of matroids to certain

problems in graph theory_ and in particular to the theory of electrical net-

works and network flows_ has been completed. No basically new results were

obtained_ but the theory was shown not only to be an elegant way of approach-

ing network theory but was also shown to be a promising tool in the solution

of certain problems in automata theory which are of a combinatorial nature.

Some of this work will appear in a monograph on graph theory principally

authored by Professor S. Lefschetz.

9- Global Liapunov functions for Morse-Smale systems.

Meyer has considered the problem of global Liapunov functions

(or energy functions) for Morse-Smale systems. He has been able to construct

global Liapunov functions for any Morse-Smale system and also show that in

'a sense these functions are unique. In the two-dimensional case one gets a

one-to-one correspondence between topological equivalence alass_of structur-

ally stable fields and energy functions. See [9] _ Appendix.

i0. Level curves of Lia_unov functions.

Miller has studied the problem of characterizing the level

curves of Liapunov functions for a nonlinear autonomous ordinary differential

equation in the neighborhood of an equilibrium point. If the dimension of

the system of equations is greater than seven it is shown that a level curve

plus its interior is diffeomorphic to a disk.

I
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ii. Asymptotic equivalence.

Miller has studied the behavior of solutions of a certain nonlinear

second order perturbed ordinary differentia& equation. Under certain

assumptions he obtains results on the asymptotic equivalence of the perturbed

and the unperturbed equations.

12. Volterra integral equations.

Miller and G. R. Sell of the University of Minnesota are jointly

studying some problems in the theory of dynamical systems. They are study-

ing the qualitative behavior of a class of nonlinear Volterra integral

equations by formulating these problems in the language of dynamical systems.

In order to do this they have the problem of obtaining the necessary theorems

on existence, uniqueness and continuity with respect to parameters. (See [17])

Miller has been studying the asymptotic behavior of solutions of

a nonlinear convolution type Volterra integral equation. He has obtained

theorems which justify linearization of these equations near critical points.

Under certain stability assumptions on the linear equations one obtains local

stability results for the nonlinear system. This theory has been applied in

some specific examples. See [i0], Appendix.

13. Periodic solutions.

Recently Sma&e has introduced a class of vector fields on a man-

ifold that hopefully will play the role in n-dimensions that structurally

stable fields play in two dimensions. Meyer has been able to give an

estimate for the number of periodic solutions these systems can have in the
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case when the fields admit a global cross section.

the general case. See [ii], Appendix.

He is now working on

14. Functional integral equations.

Meyer (with J. K. Hale) has studied a very general class of

linear functional integral equations which arise as a natural generalization

of neutral differential difference equations and pure difference equations.

The aim of this research was to carry forth the study of the linear equation

to a sufficient degree that the usual theorems for weakly nonlinear ordinary

differential equations could be proved for the corresponding weakly nonlinear

functional integral equation in an analogous way. Indeed the theorems on

stability by the first approximation and integral manifolds were established

using the developed linear theory.

The basic elements of the linear theory that were discussed were

(1) the variation of constants formula, (2) the decomposition of the space

into invarient subspaces (eigen spaces) and (3) sharp exponential bounds on

the growth of solutions on these invarient subspaces. See [12], Appendix.

15. Contact transformations.

Meyer has written a short note on contact transformations and

generating functions. It is often quoted in the literature that not all

contact transformations can be derived from a generating function. Meyer

shows that if one first makes a linear orthogonal change of variables then

any contact transformation can be written as a transformation arising from a

generating function. See [13], Appendix.

I
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16. Geometric theory of ordinary differential equations.

Poincare gave a simple geometric procedure for computing the index

of a critical point in the plane. Meyer has given a simple geometric procedure

which generalizes this formuia which will allow one to compute the index in

dimensions 2, 3 and 4. See [14], Appendix.

17. Periodic solutions of difference differential equations.

Perello has shown that the method of Cesari and Hale for the study

of periodic solutions can be extended to difference differential equations.

An application of the result is made to the study of a control system with a

delay in the feedback. See [15], Appendix.
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II

SOME IMPORTANT AREAS FOR FUTURE RESEARCH

i. Stability of time-varyin 5 systems.

Our knowledge of the stability of linear and nonlinear time-varying

systems is at the present time at about the same stage of development as

the Lur'e Problem was five years ago. The well-known circle criterion needs

to be further generalized, but especially it would seem appropriate to develop

stability criteria that depend on the whole history of the time-varying co-

efficients and not just on their instantaneous behavior. Very little effort

has been made to go in this direction, and yet it would appear that this is

the manner in which the time-varying problem should be formulated.

2. Stability of d_nsmical systems defined by partial differential equations.

Up to the present time there has not been a completely satisfactory

Liapunov type stability theory for partial differential equations, and it is

our hope that the research reported above in I - 6 will be a "break-through".

A great deal remains to be done in the way of theory but even more attention

needs to be paid to applications to such problems as the stability of structures,

of fluid flows, of the oscillations of plasmas and transmission lines, etc.

This seems to us a most fruitful area of research.

3. Dynamic prosrammin5 via Lia_unov's Direct Method.

That a relationship exists between dynamic programming, Pontryagin's

maximum principle and Liapunov's direct method is fairly well known. The result

reported in I-3 above was motivated by this relationship and provides a

sufficient condition for optimal control over a finite interval of time.

I
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The invariance principle has now provided a general stability

theory for ordinary differential equations, difference equations, functional

differential equations, and now partial differential equations.

It therefore seems natural to exploit both this new knowledge and

the known relationship between optimal control and Liapunov's method. For

instance, it is not clear that optimal control problems have been properly

formulated for functional differential equations and for partial differential

equations. This is the first thing that we would expect to learn something

about.

4. Choice of performance criterion.

Given a control system and a class of admissible controls u

the set of controllability P is the set of initial states from which the

system can be brought to the origin (zero control error) in finite time.

Define Z, called the set of stabilization, to be the set of all initial

states for which there is a control such that the system reaches the origin

in finite time or approaches the origin as t _ =. The system is said to be

controllable if the origin is an interior point of r and stabilizable if

the origin is an interior point of Z. It is obvious that if a system is

controllable then r = Z. A system can, however, be stabilizable without

being controllable.

It is known that if a performance criterion is properly selected

then optimality (assuming there is an optimal "feedback" control u°(x))

implies stability. The choice of the performance criterion will, in general,

affect the size and shape of the region R° of asymptotic stability. What

is the relation between R°, Z, and A? Does this give us a way of judging
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"good" performance criteria? For example, we might say it is "good" only

if R° = Z or perhaps require only that R ° contain some preassigned set _.

Letov states in his paper presented at the 1966 IFAC Congress in

London that "the main difficulties encountered by engineers (in the analytic

design of optimal controllers) consist in the choice of a desirable optimizing

functional." Letov then attempts to formulate the proper choice of a "payoff"

function as a problem in the theory of control.

In any case this is an interesting problem and the above approach

(less ambitious than Letov's) might shed some light on the choice of performance

criteria and the relative merits of different criteria. The first step will

be to construct some simple examples to show that the questions being asked

are meaningful. Some work was done by San Wan under the direction of LaSalle

on this problem but we were unable to devote sufficient effort to it. This is

an important problem and its investigation should be renewed.
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Journal of Differential Equations, 3(1967) , 256-270

ATTAINABLE SETS AND GENERALIZED GEODESIC SPHERES

by H. Hermes*

INTRODUCTION

For each point (t,x) c E 1 × E n let R(t,x) be a

nonempty compact subset of En. (En denotes Euclidean real n-

dimensional space.) A contingent equation has the form

o d_t)_
(i) _(t) _ R(t,x(t)) , x(O) = x ; (_(t)- dt "

a solution is any absolutely continuous function $ such that

O

_(0) = x , _(t) c R(t,$(t)) for almost all t. The attainable

set at time t -_ 0 for (i) is defined as

_(t) : [_(t): $ is a solution of (1)] .

We shall be concerned with the study of _(t), its topological

boundary which will be denoted 8_(t), and a set S(t) which is

related to 8_(t) and can be thought of as a geodesic sphere of

Research supported in part by the National Aeronautics and Space

Administration under Contract No. NAS8-11264 and in part by the Air

Force Office of Scientific Research 3 Office of Aerospace Researchj

United States Air Force, under AFOSR Grant Nr. 693-65.
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radius t.

To clarify the last statement# let

positive definite matrix valued function and

G(x) be a symmetric

!

F(x,r) = [r'O(x)r]2;

the prime denoting transpose. Then, for each x, F(x,-) deter-

mines a R_emannian metric structure on the tangent space to En

at x, which gives rise to the standard geodesic problem on the

manifold En. This is the usual case of Riemannian geometry and

S(t) would be the geodesic sphere of radius t. If, instead,

F(x,-) is the support or V_nkowski functional of a strfctly convex

set, it determines a Minkowski metric geometry in the tangent space

at x. This gives rise to the geodesic problem in a Finsler space

[i,p.82] and again S(t) would be the geodesic sphere of radius

t. In either of these cases the function F would determine an

autonomous equation of the form (i) by defining R(x) = [re Ens F(x,r) _ i).

Conversely if we were given a set valued function R(x) which,

for each x_ was an ellipsoid centered about the origin, it could

be used to construct F(x,.) and hence induce a Riemannian metric

structure in the tangent space at x.

From time optimal control theory, there is a natural notion

of extremal for the equation (i) even when R does not have so

special a form as to induce a metric in the tangent spaces. In this

case S(t) will again denote the set of all points which are

O
attained at time t by an extremal initiating from x at time

zero. Thus we introduce the nomenclature generalized geodesic

!
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sphere.

To see the relation between equation (I) and time

optimal control theory, consider the controlled system of differ-

ential equations.

0

(2) _(t) = f(t,x(t),u(t)) , x(O) = x

where x(t) ¢ En, f c C1 (once continuously differentiable) with

u, the control function, belonging to 2 = [u : u measurable, u(t)¢ U]

where U is a compact subset of En. Given a target, i.e. a con-

tinuous function z: [0,_) _ E n, a time optimal control problem

would be to find a u c 2 which "steers" the solution of (2) to

the target z in minimum time. Here, in a formulation similar to

(1), R(t,x) = [f(t,x,u) : u c U} while a solution is possible

only if _(t) N [z(t)} _ _ , the empty set, for some t _ 0.

If this is satisfied, the existence of an optimal control depends

on the compactness of _(t); in the formulation of our problem in

§i, we shall impose conditions on R(t,x) which insure this. It

is natural, then, to take as extremals arcs which satisfy the maximum

principle [2B.

Another problem which fits within the scope of our for-

mulation is that of finite time stgoility for systems of differential

equations experiencing persistent perturbations. Again, consider

the equations (2), but now it is more natural to take f(tjx, u) =

g(t,x) + u with U a compact subset of En of the form

i
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U = {y : IYl -_ ¢) where

persistent perturbation

obtain bounds at time T

¢ measures the maximum amplitude of the

u. Given a T > O, the problem is to

for the possible differences in the

perturbed and unperturbed (u _ O) solutions. Obviously, a

precise knowledge of _?) would give complete information for

this problem.

In §l conditions will be imposed on the set valued

function R which make a reasonable amount of analysis of _(t),

8_(t) and S(t) possible. In §2, properties of these sets,

the meaning of conjugate points, and examples are given and a

start is made on the problem of classifying generalized geodesic

spheres.

The author would like to acknowledge many helpful dis-

cussions with Drs. J. McAlpin and F. W. Wilson and the help in the

numerical computations received from Mr. J. Hurt.
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I
I

I
I

§i. Formulation of the Problem; Properties of R.

We wish to formulate (i) in such a way that for each t _ O,

_(t) is nonempty, Compact, and _(.) is continuous when considered

as a set valued function in the Hausdorff metric topology. From

results obtained by Filippov [3], these properties of _ will follow

if R is continuous as a set valued function in the Hausdorff

topologyj for each t,x , R(t,x) is convex, and there exists a

c > 0 such that for any function r(t,x) with values in R(t,x),

i

i
k
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1-9

the inner product (r(t,x),x) -_col÷ Ix12].

In order to deal analytically with _(t) further

restrictions are needed. These are motivated by the maximum

principle which can be formulated as follows for a time optimal

control problem associated with (i). Define H(p,r) = (p,r)

for r ¢ R(t,x), p ¢ En-{o] and

(3) H*(t,x,p) = max [(p,r) : r ¢ R(t,x)) .

Then a necessary condition that a solution @ be optimal (for

some problem) is that there exist an absolutely continuous function

so that _,_ satisfy, respectively, the equations

(_)

= m 0_(t) _ _*(t,x,p) x(o)=x
8P

_(t) = --_---H*(t,x,p) p(O)¢ Sn-1
_x

where Sn-I denotes the unit n-i sphere. Intuitively this is

a necessary condition that _(t) belong to the boundary of _(t).

With the proper conditions on R(t,x), the algebraic

maximization which produces H* will define a "smooth" function

r*(t,x,p) such that H*(t,x,p) = (p,r*(t,x,p)). We will want

r* to be continuous in t, once continuously differentiable in p

and twice continuously differentiable in x. The continuity in t

I
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1-6

and x will follow from continuity conditions on the set valued

function R; the continuity with respect to p, however, depends

completely on the "shape" of the set R(t,x). It is shown in [4]

that if R(t,x) is strictly convex and contains more than a single

point_ r*(t,x,p) is continuous in p. Furthermore, assume R(t,x)

is strictly convex and the Gauss map _ : 8R(t,x) -_ Sn-l, which

associates with each point on 3R(t,x) the unit outward normal at

that point, is well defined and continuously differentiable in terms

of local coordinates. Then since r*(t,x,p) maximizes (p,r) for r _ R(t,x)

it is clear that r* is defined implicitly by the requirement

B(r*(t,x,p)) = P/IPl. Hence defining G(r,p)= _(r)-p/Ip I for

r c _R(t,x), p c En-{o), the implicit function theorem applied to

G(r,p) = 0 will yield a function r*(t,x,p) which is C1 in p

and satisfies G(r*(t, x,p) ,p) - O if the Jacobian matrix Gr(r,p )

has the required rank. The requirement on the rank of this Jacobian,

see t4S, can be shown to be equivalent to the condition that the

Gauss map, in terms of local coordinates on 8R(t,x), have non-

vanishing Jacoblan.

With the Previous conditions and their implications

in mind, we shall now give a precise representation and formulation

of properties which will be assumed for R(t,x).

Let _(t,x,r) be a'real valued C2 function defined on

E1 X En X En which satisfies

I



I
I

I
i

I
I

I

I
I
I
I

I

I
I

I

l
I

I



I

I

I
I

I
I

I

I
I

I
I
I

I

I
I

I
I

I

I

1-7

(5)

(6)

Define

_rr(t,x,r) is a positive definite matrix

_(t,x,O) = O.

Q(t,x) = (r c En : _(t,x,r) -_i} .

Then Q(t,x) is nonempty, compact, and Q is continuous as a

set valued function in the Hausdorff topology. Property (9) implies

the second fundamental form, in terms of local coordinates on

_Q(t,x), is definite. But the second fundamental form is a repre-

sentation of the differential of the Gauss map. The strict con-

vexity and nonvanishing of the Gauss map are thereby implied,

yielding the desired continuity properties of the function r*

which maximizes (p,r) for r ¢ Q(t,x).

From (6), we see zero always belongs to Q(t,x), a con-

dition which need not be imposed on R(t,x). Let g: E1 X En -*En

be a C2 function and define

(7) R(t,x) = [g(t,x) + r : r c Q(t,x)] .

In what follows, it will always be assumed that R admits a

representation as in (7) and that there exists a c _ 0 such that

(g(t,x)+r,x) _- c[l+Ixl 2] for any r ¢ R(t,x); i.e. the corresponding

trajectories of (1) will not escape in finite time.
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1-8

Actually, this formulation is quite general. It con-

tains Finsler geometry (and therefore Riemannian geometry) as the

case g -= 0 and _ independent of t. (Compare [1,p. 84]). Also,

it is shown in [4] that any time optimal control problem which

satisfies the Filippov existence conditions can be approximated

arbitrarily closely (in the sense that solutions of the approx-

imating problem are uniformly close to those of the original

problem) by a problem with R of the form considered in (7).

From the maximization it follows that r*(t,x,p) is

that unique point on 8Q(t,x) where the outward normal has the

direction p, i.e. £r(t,x,r*(t,x,p)) = kp for some k > O.

Then, since n(t,x,r*(t,x,p)) - i, _ r* = 0 or
rp

(8) pr;(t,x,p) = O.

(We will not use primes to designate transpose of a vector when

this is obvious from its placement.) The equations (k) now become

O

(9) _(t) = g(t,x) + r*(t,x,p) , x(O) = x

* sn-i
(lO) _(t) = -p[gx(t,x) + rx(t,x,p)] 3 p(O) _ .

The formulation is such that the right sides of these equations are

C1 hence they can be used constructively rather than to Just state

i
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I

!
necessary conditions. Also, it suffices to consider p(O) ¢ Sn-I

since from its definition r*(t,x,c_p) = r*(t,x,p) for G > 0

ii

II
I

hence if _ is a solution of (I0) so is _. Now let _ = (_l,..._n_l)

be local coordinates on sn-l; for any p(O) = _ ¢ Sn-I the

equations (9) and (i0) have unique solutions, denoted _(.,_),

_(.,_) respectively. Define

i (Ii) S(t) = [_(t,_) : _ c Sn-l) .

For each _ • Sn-l, _(., _) is an extremal in the sense that it

satisfies the maximum principle. We may also consider _(.,_)

as playing the equivalent role of the exponential map in the

I

!

!

classical geodesic problem. Since the right sides of (9),(10)

are Cl, solutions are differentiable with respect to initial

data. Geometrically S(t) may be viewed as the projection, onto

the first n coordinates, of the diffeomorphic image of Sn-1

under the flow of (9),(10) in E2n.

I

I

I

For later use it will be convenient to have an equiv-

alent representation of R(t,x) of the form

R(t,x) = [g(t,x) + f(t,x,u) : iul -_l) .

This is easily obtained as follows. Let p(t,x, .) be the support

function of Q(t,x). [Note: D was not required to satisfy
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D(t,x, Gr) =GN(t,x,r) for G > 0 and therefore need not be a

support function.] Define f(t,x,u) = u/p(t,x,u/lul) for u_ O

and f(t,x,O) = O. This f yields the representation (12) for

R(t,x) and satisfies the continuity conditions needed for the

maximum principle.

§2. Pro_ertles of _(tl, _ and S(t).

Let _ (t) = Uo_t _(x) ; this is sometimes referred

to as the attainable funnel. The first three properties are

immediate consequences of the problem formulation and results of

Filippov [31,[91.

Property I

Property 2

Property 3

Property 4

t _-01 _(t)For each

The set valued function _(')

Hausdorff metric topology.

For each t _ O,_(t) i__ss_ compact set in

tI _ 0, v--_(tI) is arcwise connected.For each

is a nonem_ty compact set.

is continuous in the

E1 X En.

Proof: Let o and i be any two solutions of _ ¢ R(t,x),

o
x(O) = x . Using the representation (12) we have for almost all

t c [O, tl] and i = 0, i, _i(t) = g(t,_(t))+f(t,_i(t),ui(t)) for

i
some lui(t)l _ i. By a lemma of Filippov [3], the functions u

G
may be assumed measurable. Now for each G _ [O, 1] define u

!
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by uG(t) = Gul(t)+(l-G)uOCt). Then UG is measurable, luG(t)l-_ x

and the equation _ = g(t,x)+f(t,x,u G) , x(0) = x° has a unique

solution; denote it by _G. From the continuity properties which

the solution possesses with respect to parameters, as G varies

continuously from 0 to I, @G(tl) traces out a continuous arc

Joining @°(tl) to @l(tl)in _(tl).

EXAMPLE i. Consider the following two dimensional problem.

_((t) ¢ R(x(t)) , x(O) = (-1,O) where R(x) = {r ¢ E2:Irl _-Ixl] .

Here _(x,r) = Irl/Ixl ; we may either consider x = 0 not in

the domain of definition, or define R(O) = {0]. Here we deal

with Riemannian geometry since

(o[_G(x)_]2where G(x)= l/ xl 2

R(x) determines the metric

0

1/Ixl2/"

On the unit circle Ixl : !, R(x) is a unit disc

implying that it is possible to traverse the unit circle, with

unit velocity in either direction. Also, the point x = 0 is

not attainable from (-1,O) in finite time. Thus for t1

slightly larger that v one expects _2(tl) to look as follows.

I

I

I
I
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Here S(tl) is an immersed sphere, _(tl) is not simply con-

nected and the topological boundary of _(tl) , i.e. _(tl) ,

is a proper subset of S(tl).

The time optimal point to point transfer problem for

¢ R(x) is equivalent to the geodesic problem on the manifold

determined by G(x). Indeed, since a geodesic will satisfy
t I

l_(t)l = _x(t)l 2 its length will be fo [_G(x)_dx = t.

The previous example shows that (_(t) need not be

simply connected; insight into how this can occur with increasing

time may be gained from ithe following.

Property 5 Fo__!rany tI > O, 8_!tl) C S(tl) and for every point

y _ 3_tl) there exists a continuous function

z : [O,t I] -_En such that z(tl) = y and

_(t) G (z(t)) : _ fo__!rO -gt < t1.

Proof, Assume y c 8_(tl) and x(.) is a solution of

O

¢ R(t,x), x(O) = x , such that x(tl) = y. Suppose there exists

no arc z : [O, tlS _E n with z(tl) = y, _(t) N (z(t)} = _ for

O _ t < t1. Then for some t'_ [O, tl) we must have (_(t') has

a non empty n dimensional interior to which x(t') belongs.

Indeed if x(t) ¢ 3(_(t) for all t ¢ [O, tl] , using the compactness

of the funnel_(tl) , it is easy to construct a continuous function

z, with values z(t) in a neighborhood of x(t), such that

((t,z(t)) : O _ t _ tl) and _(tl) have only the point (tl,Y)
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in common.

Now, using the representation (12) and the lemma of

Filippov [3], we may assume the existence of a measurable function

u* , lu_(t)l-_i, such that _(t) = g(t,x(t))+f(t,x(t),u*(t))

almost everywhere. Since x(t') is in the interior of (_(t'),

there is some neighborhood N(x(t')) contained in _(t'). Keeping

u* fixed and using points in N(x(t')) as data at time t' for

the differential equation _ = f(t,x,u*), the solutions evaluated

at time tI provide a neighborhood of y which must belong to

_(tl). This contradicts the assumption y e 3_tl).

We next show that _(_(tl) C S(tl). Let y c 3(][(tl);

by the result obtained in the first part of this proof there exists

a continuous function z : [O,t I] -_E n such that the problem of

O

hitting z in minimum time by a solution of _ e R(t,x), x(O) = x ,

has a solution with the optimal time being tI and the intercept

oceuring at the point y . The maximum principle, which is a

necessary condition, then shows that if @ is the solution, there

exists a function _ such that the pair _,_ satisfy equations

(9) and (I0) respectively for some $(0) ¢ Sn-l. Thus y e S(tl).

Property 5 shows that for every point on _t)3 there

is a time optimal control problem for which the optimal interception

occurs at that point.

.Property 6 l__nnEn, fo___rrtI > O and sufficiently small, S(tl)

is the diffeomorphic image of sn-l(i.e. _(tl,.) is

I
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an imbeddin 6 of

ward normal to

an n disc and

Sn-I -_E n) ; _(tl,_) is an out-

S(tl) at _(tl,_); _(t I) is

3_(tl) : S(tl).

Proof:

coordinates on

Remembering that _i''" "' _n-i are local

Sn'l, let P(_) be the inclusion map of Sn-I -_E n.

We shall adopt the notation that for any vector function (row or

column) v(_), v_ denotes the matrix of partial derivatives

(vi_j(_)) •

For @(t, _)g S(t),

(13)

O

_(t,_): x
t

+ f [g(x,_(_,_)) + r*(_,_(_,_),*(_,_))Id_ ;
O

t

_(t,_) = f[(gx + rx_(x,_) + rp,_]dx 9
O

_(0,_) = O. If _ has rank n-i its rows span the tangent space

of S(t) at the point _(t,_). Since q_(O,_) = 0 and the Gauss

map having nonvanishing Jacobian determinant on 8R(O,x °) implies

rp(O,_(O,_),_(O_))_(O,_) has rank n-l, it follows from obser-

vation of the integrand in (13) that for t sufficiently small, but

positive, _(t,_) has rank n-1.

Also, the continuity properties allow equation (13) to

be differentiated with respect to t, showing that _(',_) satisfies

the matrix differential equation

I
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1-16

(l_) _(t,_) = [gx(t,_(t,_))+rx(t,_(t,{),$(t,_))]_(t,_)+r;$_

with data _(0,_) = O.

Let I(-s_ ) denote a fundamental solution matrix to

9=-p[gx(t,_(t,_))+rx(t,_(t,_),_(t,_))]; then _(t,_) can be

written as $(t,_) = _({)_(t, _) and we have the representation

(19) m_(t,_) : I
0

I-l(t, _)_( x, _)r;(-x,_(x, _),_( _,_))_(Z, _)dx.

Multiplying both sides of this by _(_)_(t, _) on the left and

using (8) which shows that $(t, _)r;(t,_(t, _),_(t, _)) = O, we

get

(_) $(t, _)_(t, {) : 0 .

Now this holds for all t, even if rank _(t, _) < n-l. In

particular, if tI is sufficiently small so that rank _(tl, _) =

n-1 the rows of _(tl, {) span the tangent space to S(tl) at

_(tl,_) and (1)shows _(tl,_) is a normal to S(tl) at

• (t l, _).

We have Shown that for each tI > 0 a_nd sufficiently

small, _(tl,-), as a map of Sn-I -_E n, is regular (i.e. a CI

map with Jacobian of rank n-l) and therefore S(tl) is an

i_nersed sphere. We must show the mapping is globally one-one

I
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i- 17

(or that S(tl) is the homeomorphic image of a sphere) in order to

conclude that _(tl,.) is actually an imbedding and S(tl) an

imbedded sphere.

From our formulation, _(0,') is the inclusion map of

Sn-I into En. From (i0) one sees that for initial data p(O) = O,

p = 0 is a solution; from uniqueness it follows that for all t _-O

and _ e Sn-l, l_(t,{)l _ O. For each t _-O define

(z?) n(t,'): Sn-I -_S n'l by n(t,_) = $(t,_)/l_(t,_)l.

Before proceeding with the remainder of the proof of

property 6, we shall need

LEMMA i. For each t _-0, the degree of the map n(t,.) is one.

sn-1Proof: n(O,-) is the identity on hence has degree

one. Also, n : [O,t] × sn-l-* Sn-1 is a smooth homotopy; the degree

is a homotopy invariant hence the degree of n(t,-) is one.

Since n(0,.) is the identity map on Sn-l, rank n_(O, _) =

= n-1 ; by continuity for tI • 0 and sufficiently small, rank

n_(tl,_) = n-1. This shows n(tl,-) is an immersion of Sn-1 -_Sn-1

of degree one, it must therefore be a diffeomorphism. Indeed_ if

not, there must be points to, _i¢ sn-1 with n(tl 'to) = n(tl '_i)

and sign [det n_(tl, _°)] = - sign [det n_(tl,_l)]. Now Join t°

to _l by an arc on sn-l; at some point of this arc det[n_(tl,_)] = 0s

a contradiction.
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1-18

Now if tI > 0 is sufficiently small so that _(tl,.)

is an immersion and n(tl,. ) is a diffeomorphism, we will show that

_(tl,-) is actually an imbedding. Suppose not, i.e. S(tl) has

a self intersection, in particular there exist to,_l¢ sn-l, _o _ _i

and _(tl ,to) = _(tl ,_I). Let P be a hyperplane orthogonal to

n(tl,_ °) at _(tl '_o); without loss of generality we assume the origin

of En to be at _(tl,_°). Let h be the height function h: S(tl)-_R I

defined as the length of the projection of a point of S(tl) on

n(tl, t°). We note that a critical point of h is a point where

the normal to S(tl) has direction + n(tl, t°). There are three

possibilities, a) S(tl) has points on either side of P; b) S(tl)

lies in P ; c) S(tl) lies on one side of P. In case a) there

must be at least one critical point of h in each of the open half

spaces formed by P, i.e. there is a _2c Sn'l such that the normal

to S(tl) at _(tl ,_2) has direction n(tl, t°) which contradicts

the fact that n(tl,.) is a diffeomorphism. In case b) we must lose

the property that _(tl,_) has rank n-i at several points. In case

c) we must have n(t I, _o) = n(tl,_l),(i.e, a point of

I
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second order contact with P) which is again a contradiction to

n(tl,-) being a diffeomorphism. This shows for tI > 0 and

sufficiently small, _(tl, .) is an imbedding.

From property 5, _ g_t I) C S(tl) ; certainly

S(tl) C _tl). For tI > 0 but small enough so that S(tl) is

an imbedded sphere, it follows that _ 5(t I) = S(tl) and (_(tl)

is the unique disc bounded by S(tl).

In keeping with the classical geodesic problem, _ (_(tl) =

= S(tl) for tI > 0 and sufficiently small and property 9 imply

that locally (0 _-t _ tl) every extremal is minimizing (optimizing).

This is not true if R(x) is merely convex'

In general it is not true that an immersion of Sn-I -_E n

have a unique extension to an immersion of the disc Dn. Therefore,

even if _(tl,') is an immersion which extends to a disc immersion,

one cannot conclude that _.(tl) is necessarily the image of the disc

trader this immersion. However, in our case, even when _(tl,-) is

not an immersion, we have:

Property 7 The mapping q_(tl,.) : Sn-I _ En extends naturally to

a continuous map of the disc Dn -_En such that the

image of Dn is _(tl).

Proof: Modify the equations (9),(10) as follows:

][= g(t,x) + o_*(t,x,p) ,

= -p[gx(t,x)+ar_(t,x,p)] ,

O

x(O) = x , O__a__ i

p(O) = _ ¢ Sn-I .

!
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Denote a solution pair of these modified equations by _(-,_,G),

,(-, _,G) ; certainly $(.,_,1) = _(-, _). One may note that for each

a, the modified equations are associated with the contingent equa-

tion _ ¢ R(t,x,G) where R(t,x,G) = [g(t,x)+or : r c Q(t,x)]. We will

show the map _(tl, _,G) for (_,(_) considered as polar coordinates

in the disc D n, is the required extension of _(tl,').

For each G ¢ [0, I] let _(tl, G) denote the attainable

o

set at time tI for _( ¢ R(t,x,G), x(0) = x , and let S(tI, G ) =

= [_(tl,_,_) : _ ¢ sn-l].

Now R(t,x,_) C R(t,x,l) = R(t,x) hence _(tl,_ ) C _(tl)

for each _ £ [O,i], or [_(tl,_,(_ ) ; _ 6 Sn-l, 0 _- (_ _- i] C _(tl).

To complete the proof, the reverse inclusion must be shown.

Using property 5, for each G e [0,1], 8([(tl, G) C S(tI, G )

hence UG c[O,l]8_(tl,(_) C U_ ¢[O,l]S(tl, a) : [_(tl,_,_): _ _sn-l,

0 _ (_ -_ i]. The proof will be complete if we show _tl) =

Ua C[O, l]_@(tl ,a)"

Certainly % c[O,l] _ _(tl'_) C _(tl) ; to obtain the

reverse inclusion, suppose y c _(tl) ; we will show it belongs to

_(tl,_ ) for some _ c [0, i]. It is easy to check that _(tl,_ )

is a continuous function of G in the Hausdorff metric topology,

with _(ti, l) = _tl) and _(tl, O ) consisting of a single point

which is the unique solution of _ g(t,x) , x(O) = x O= , evaluated

at time tI. Thus [_ c [O_i] : y _ _tl,_)] is a closed interval;

it has a least member, say G*, and y c 8_(tl,_* ).

!
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In property 6 it is shown that for t I > O and sufficiently

small, _(tl,') is an imbedding of Sn-1 -_ En. Example 1 shows that

for tI large enough, _(tl,-) may cease to be an imbedding and

become an immersion. It is also possible, see equation (13), that

as tI increases, the rank of _(tl, _) becomes less than n-1.

Since _(tl,_ ) plays the equivalent role of the differential of

the exponential map in the classical geodesic problem, it is natural

to define a conjugate point as follows.

Definition. A point _(tl '_I)

the extremal _(., _i) if rank

o
is conjugate to the point x

_(tl, _l) < n-1.

along

By this definition, conjugate points occur when the mapping $(tl,. )

ceases to be an immersion. Thus, in example l, there will be no

conjugate points, since the equivalent geodesic problem is in a

manifold of negative curvature. (See [6,pp. 100-i02].) While this

notion of conjugate point agrees with the classical notion, it is

not equivalent to either of the definitions of conjugate points given

in [7] or [8].

It would be interesting to classify those immersed spheres

which could occur as the image of Sn-I
under _(tl," ) for some

contingent equation with R(t,x) as in (7). Of course it would

be of even more interest to allow pseudo-immersions [9], so that

the case rank _(t,_) < n-i can also be considered.

From equation (16) in the proof of property 6 we see that
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*(t, _)_(t, _) = 0 even if rank _(t, _) < n-l, hence $(t, _) yields

a generalization of the usual notion of an outward normal to an

Immersed n-i manifold in En. In particular, if S(tl) is an

immersed sphere then $(tl _ _i) is an outward normal to S(tl) at

_(tl 2 _i). From this observation and lemma i we obtain

property 8 If S(tl) is an i_nersed sphere, (i.____e._(,tl,-): Sn'l -* En

is an immersion) the de_ee of its nor_l (or Gauss) map is one.

Proof: Let _: S(tl) -* Sn-1 be the normal map. The

conclusion is a consequence of the commutivity of the following

diagram.

/__ S(tl) _

Sn- i 8n- i

n(tl,. )

Actually, we can think of n(t, _) as a generalization of

a unit normal to S(t) at _(t, _) even if a normal (in the usual

sense) does not exist. Lemma i shows that the degree of this general-

ized Gauss map is always one even if _(t,-) is not an immersion.
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I The property of having normal degree one is not alone

I

I
I

enough to classify the immersed spheres which can be generalized

geodesic spheres (i.e. S(tl) for some contingent problem with

R(t2x ) of the form (7).) In [10], Smale classifies immersed

spheres up to regular homotopy. Following property 9, we will

show that this is also not a fine enough property to distinguish

I
I

I
I

I
I

I
I

generalized geodesic spheres.

Property 9 If y ¢ _ _tl) the____nthere exists a closed neighbor-

hood N contained in _tl) with y ¢ 8N. (t I > O°)

O

Proof: Let y _(tl,_l), and y = $(t1-¢,_ l) for

c > 0 and sufficiently small so that (using property 6) the attain-

O

able set at time t I from "initial" data x(tl-¢ ) = y rather

O
than x(O) = x for equation (9), is a disc. Then y belongs to

the boundary of this disc and the disc belongs to _ (tl).

E 2The following figure shows an immersion of S1 -* of

normal degree one which cannot be a generalized geodesic sphere

(see the point y) yet is regularly homotopic to the immersion of

S1 obtained in example 1. The regular homotopy is obtained by

"pushing' along the arrows.

I

I

I

I

I
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I The following gives an application to a time optimal control

I

I

problem, which in its original formulation does not fit the theory.

It also shows that S(tl) can be computed numerically even if

"singular" arcs occur.

I EXAMPLE 2. Consider the controlled, two dimensional system

I Xl = Ul

I
I

I
I

2
x2 = i + XlX2U I

, Xl(O): 0

, x2(o): o

with control constraints lul(t)l_-1. As it stands, the corres-

ponding set R(t,x) does not admit the representation we require,

however by adding a "small" second component of control one may

consider

I
I
I

I

Xl = Ul ' Xl(O) = 0

2
x2 = i + XlX2U I + u2 , x2(o): o

22 2 2

where now we require c uI + u2 _- ¢ , i.e. the controls come from

an ellipse with semi-major axis one, semi-minor axis ¢. The problem

I
is now within our formulation, equations (9) and (i0) become

I

I

Xl = Ul ' Pl= -2P2X2XlUl

2 . 2.
x2 = i + XlX2U _ + u2 , 92 = -P2XlUl

I
m
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where

, 2 . 2.2.-½Ux(X,p)= [pl+P2X2x21][_ p2+tpl+p2x2xlj J

2 2, 2,2._½u_(x,p) = ,2p2[_p2+tpl+P2X2_lJ j

One can compute S(t) by numerical integration of an initial value

problem; a reasonable spacing of the initial data on S1 csm be

obtained by noting that for c small and Pl

change rapidly with the remaining variables.

were easily obtained numerically.

near zero, u may

The following figures

In each figure p(0) = _ ¢ SI was given in angular

measure with p(O) = (1,O) corresponding to 0°; p(O) = (O, 1)

corresponding to 9O° etc. and the computation carried out at each

degree for five degrees on either side of 90° and 270°, while

increments of 9 to 19 degrees were used elsewhere.

In figure 3, at t = l, one would still expect that

_(1,-): S1 _ E2 is an imbedding. In figure 4, at t = 4, it is not

even an immersion, i.e. conjugate points have occured. The sharp

corners which seem apparent in figure 4 may well exist since S(tl)

is merely the projection to E2 of a diffeomorphic image of S1

in E4.
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INTRODUCTION

We shall consider the control system

o

_(t) = f(t,x(t),u(t)) , x(O) : x (i)

where x(t) is an n vector, u(t) an r vector. Our interest will

be focused on solutions which exist within some fixed finite time interval

[O,T].

The control functions u will be assumed to belong to a con-

trol set _ which may be given in either of the two following ways.

(i) For each

n space

the sets

E r for

t e [O,T] let U(t) be any subset of Euclidean

En and _ = [u e £ [O,T]: u(t) c U(t)]. We assume

U(t) are contained in some fixed bounded sphere in

t e [O,T].

(ii) 2 is a bounded subset of r vector valued functions with

components in £ [O,T].

The first case is that which is usually considered in control

theory. It is not necessarily the practical case, since the admissible

control functions may be a-priori restricted by the electronic and

mechanical ability of function generators.

In the latter case, rather than introduce the awkward notation

that _ is contained in the direct product of £_[O,T] taken with itself

r times, we will merely write _ C _ [O,T]. The number of components

a control u e _ has will be unimportant or clear from context.
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There will be need to consider Z with its norm topology,

its weak topology, and its weak* topology (or Z 1 topology of _ ).

For writing ease both notations for the weak* topology will be used.

We will assume:

f is continuous on [O,T] X En X E r and once

continuously differentiable in the x argument,

unless explicitly stated elsewise.

(2)

There exists a constant

x • f(t,x, u) -_ c[ 1 + Ixl 2]

the domain of definition of

finite escape time.)

c > 0 such that

for all t,x,u in

f. (This prevents

(3)

REMARK: Actually (3) implies any solution of (i) will remain in the

sphere Ixl -_ [1 + Ix°12]exp(cT)j therefore the condition (2) can be

relaxed by replacing En in the domain of continuity by this sphere,

and Er by the bounded sphere within which the controls take their

values.

unique solution defined on

With these assumptions, for each u e g equation (i) has a

[O,T] which will be denoted x(.,u).

Define:

_= {f( ,x( ,u),u()) _ Z[O,T] • u e_)

t

= En: x °_(t) [x(t,u) _ u c a} = [ + I z(_)dT : z g }.

o
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If _ has the representation (i), it is possible to define

I

I
= EnF(t) [f(t,x(t,u),u(t)) c " u _ _] I

From the representation (i) it follows that an equivalent definition is I

F(t) = [f(t,a,_): a c _(t), a c U(t)]

One could define a set analogous to F(t) in its first repre-

sentation for the case _ given as in (ii) by introducing the notion

of approximate continuity [l, pp. 261-2] to circumvent the difficulty

that the value u(t) of an element u c _ is ambiguous. However in

this case the second representation would not be an equivalent repre-

sentation. In what follows this would be of no use, therefore whenever

reference is made to F(t) it will be understood that G has the

representation (i).

t

_(t) = [xO + I Z(T)dT : Z
o

measurable, z(_) c F(_)

for 0 <--T _- t].

REMARKS: a) From the assumptions on f and _ it follows that (_'

is a bounded subset of _ [O,T]. It is the set of derivatives of

admissible trajectories.

_(t) is commonly referred to as the attainable set atb)

time t. We always have _(t) C _B(t), one of the things we shall

be interested in is when are these sets equal.
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We shall next summarize results. In doing so several theorems

from other references will be stated, at times the statements of these

may be somewhat different from the form in which they originally

appeared. In these cases the verification of the equivalence will be

included in §i where proofs of the results are given.

I. [2, Theorem i] _(t) is convex for each t e [0, T].

II. [2, Theorem 4] If F(x) is closed for each t e [O,t] (our

assumptions imply it is bounded) then _(t) is convex and

compact for each t ¢ [0,T].

III. [3, Theorem 1 and Lemma]. Suppose _ has the representation (i)

with U(t) a nonempty compact subset of E r for each t _ [O,T]

which is continuous in the Hausdorff topology as a function of

t. Suppose further that for each t,x_ [f(t,x,_): _ ¢ U(t)] is

convex. Then F(t) is closed for each t _ [O,T].

IV. (Restatement of Theorem i, [3]). Assume the hypotheses of III.

Then _ is a weak* compact subset of Z [O,T].

REMARK: From this it immediately follows that _(t) is compact.

t

Indeed the mapping B : £_ _E n defined by LZ = f z(T)d_ is weak*
o

continuous hence the image of _'_ is compact.

V. Assume the hypotheses of III and that for each _ _ [O,T] and

a, a' _ _(_)

[f(_,a,a): # c U(_)} = (f(_,a',c): _ c U(_)). (4)

I
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Then _(t) = (_(t) for each t _ [O,T].

VI. (Combining II, III, and V) If the hypotheses of V are satisfied

_(t) is compact and convex for each t c [O,T].

REMARK: Compactness of

the convexity of _(t)

_(t) is essential in existence theorems,

rules out "conjugate points" and thus

simplifies sufficiency conditions.

The next few results pertain to the case where _ has the repre-

sentation (ii).

Let X* be the dual of a Banach space X, then every closed and

bounded (in norm) convex set in X* is closed in the X** (or weak)

topology of X*. Also, a subset of X* is compact in the X topology

of X* if and only if it is bounded in the norm topology and closed

in the X topology. (See [6, pp. 422-424].)

In [4, p 881] Klee shows: Every nonreflexive separable Banach

space contains two disjoint closed bounded convex sets which cannot

be separated. As remarked in [4], the separability is not essential

since every nonreflexive space has a nonreflexive closed separable

subspace within which one could apply the result. Using Klee's result

one easily obtains

VII. If X* is a nonreflexive Banach space which is the dual of a

Banach space X, it continas a closed, bounded, convex subset

which is not closed in the X topology of X*.

For any y : (yl,...,yn) with components in _i let L(y) denote

I

I

I

I

I
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I

I the linear operator from Z to En defined by

I
T

y(u) -L(y)u-- f y(T)u(_)d_

o

(5)

I (We assume u is scalar valued.)

I

I

VIII.
There exists a y e £1[O,T]

bounded, convex set _i C Z

L(y) is not closed in E n.

such that the image of the closed,

under the continuous linear map

I

I

Equivalently, it readily follows from this that there exists a

linear control system of the form

I _(t) = A(t)x(t) + B(t)u(t) , x(O) = x ° (6)

I

I

I

I

I

where A, B have components in ZI[O,T] and u,_ _i' s, dl@sed_bounded)

convex subset of _ [O,T], for which _(T) is not compact.

§i. VERIFICATION OF STATED RESULTS.

III. F(t) is closed.

For _ as given in III, F(t) = [f(t,x,_): x ¢ _(t), s ¢ U(t)).

Filippov's theorem [3] shows _(t) is compact, U(t) is given compact

and f is continuous therefore F(t) is compact.

I IV.

I

I

I

is weak* closed.

nLet zn(') = f(',x(',un),un(')) e and z converge to

in the weak. topology. We will show z e_.

Since S is bounded in norm it is easily shown that zn

converges to z in the weak. topology if and only if



t t
f zn(_)d_ -_f z(_)d_ for each t e [O,T] (Exercise 27,[6, p.342]).
O O

t
o

Letting x(t) = x + 7 z(_)d_ , t e [O,T], the hypotheses imply x(.,u n)
o

converges to x uniformly. But then by the Filippov argument [3, proof

of Theorem i] x is an admissible trajectory, i.e., there exists an

admissible control u such that z(t) = i(t) = f(t,x(t),u(t)) for

almost all t e [O,T] showing z e_.

t
o

V. (Proof). We already know _(t) C _(t), now let x + f z(T)dT
O

be any element in _(t),i.e., for each s e [O,t], z(s) e F(s). We

T
O

must show x + f z(_)d_ is an admissible trajectory for _ e [O,t].
o

By the representation of _ and property (4) of the hypotheses

of V, F(s) = [f(s,a,o) : o e U(s)} for any a e _(s). Pick any

Oadmissible control u , let x( ,u °) be its corresponding trajectory.

Then for each s e [O,t], z(s) e [f( s,x( s, u_, _ ) : _ _ U(s)] hence by

the Filippov lemma, [3], there exists an admissible control ui such

that z(s) = f(s,x(s,u°),ul(s)) almost everywhere. Using u_ in the

o
place of u we may proceed inductively to generate a sequence of

trajectories [x(.,un)} and corresponding sequence of controls [un+l}

such that z(s) = f(s,x(s, un),un+l(s)) almost everywhere in [O,t].

From the sequence [x(-,un)} choose a uniformly convergent subsequence

(the original sequence is easily seen to be an equicontinuous family),

for notational ease assume it is the original sequence. Define

zn(s) = f(s,x(s, un),un(s)), then

Izn(s)-z(s)l : If(s,x(s, un) ,un( s) )-f( s,x( s,un-l),un(s))l

n-l)K supIx(s,un)-x(s,u i
o__s<=t

I
I
l
I

I
I

I
I

I
I
I

I

I
I

I
I
I

I
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0
for almost all s c [O,t]. But x(T,u n) : x + f zn(s)ds is an admis-

O

sible trajectory hence from the preceding estimate x(_,u n) converges

o _z( o _uniformly to x + f s)ds. Therefore x + t(s)ds is the uniform

limit of admissible trajectories, by Filippovs Theorem [5] it is an

admissible trajectory which completes the argument.

VII. In [4], Klee shows that every nonreflexive separable Banach space

contains two disjoint_closed_bounded_convex sets which cannot be separated.

The separability of the space is inconsequential since, as commented in

[4]3 every nonreflexive Banach space X* has a separable nonreflexive

closed subspace. Let E* denote this subspace; consider A,B closed

bounded and convex in E* and such that they cannot be separated. Then

as subsets of X* they are also closed, bounded, convex and cannot be

separated by a hyperplane since E* C X* implies X** C E**; i.e., any

is a continuous linear functionalcontinuous linear functional on X*

on E*.

Now suppose either A or B is closed in the X topology

of X*. Then by corollary 3, [6, p. 424] it is compact in the X top-

ology of X*. This implies we have two closed, disjoint, convex sets

in a locally convex linear topological space (X* with its X topology)

one of which is compact. By corollary ll [6, p. 418] there exists a

nonzero continuous linear functional f which separates them. But if

f is continuous in the weak, topology it is continuous in the norm

topology of X*, i.e., f c X**. This implies f separates A and B

in X*, a contradiction. Thus neither A or B can be closed in the

X topology of X*.

I
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VIII. (Proof). It suffices to consider y, as in (5), to be scalar valued,

i.e., L(y) : £ _ E 1. We will consider only real linear spaces.

Let X be a Banach space and K* a bounded, X closed,

convex subset of X* (i.e., an X compact subset of X*.) Then K*

has continuous (in the X topology of X*) nonzero, tangent functionals.

In fact it is known that these exist at each point of a dense subset

of its boundary (see [6], exercise 13, p. 459). Explicitly, let D*

be the (nonempty) subset of the boundary of K* at which continuous

tangent functionals exist, i.e., for each x_ e D* there exists a non-

zero g e X and real constant Cg such that g(K*) _ Cg , g(x_) = c .g

Such a g determines a support hyperplane hg to K* at x_ where

hg = [x*c X* : g(x*) = Cg] and a corresponding closed half space

Hg = [x*e X* : g(x*) _ Cg] which contains K*. Let G be the family

of continuous tangent functionals so determined by elements of D*.

is uniquely determined as the intersection of the half spaces

K* = NgeGHg.

x(x_) = c,

is compact

such

Proof of lemma: If x*c K* then x*e H for every g hence
g

K* C NgeGHg.

To obtain the reverse inclusionj suppose x_ e NgeGHg but

x_ # K*. Since K* is closed and convex there exists a continuous

linear functional x c X which separates x_ and K*, suppose

x(x*) < c for x*_ K*. Let c = sup[x(x*): x*e K*}, since K*
x

in the X topology of X* c < c and there exists an x_ ¢ K*x

that x(x_) = c . But then x_ ¢ D* and x E F and since x(x_) = c > cx x

I
I

I
I

I
I

I

I
I
I

I
I

I
I

I
I
I

I
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I we have a contradiction to x_ ¢ NgcGHg.

I

I

REMARK: The existence of even a single support plane for a bounded,

closed, convex subset of a Banach space is still an open question.

[7, p. 98].

See

i We now continue the proof of VIII. Let _i be the bounded,

closed (in _ ) convex set which is not weak* closed, as shown to

I exist in Vll. Let _i denote the weak. closure of _i' then _i-_i

is not empty. Applying the preceding lemma to _i we see it is uniquely

I determined by its support planes; since _I _ _i there must be a support

i plane P to _i which is not a support plane of _i" Let Y _ _i be

the continuous, linear, (tangent) functional which determines P, i.e.,

I y(x*) __ c for x* e _i and y(x_) = c for some x_ ¢ _i" Since P

is not a support plane for _l' y(x*) < c for all x* _ _l but since

I x_ the weak, closure of _i there exists a sequence [z_} C _iis in

with limv -__y(z*) = c. This shows c is in the closure of L(y)_ 1

I but not in L(y)_ I.

!
REMARK: Using the theorem of Lyapunov on the range of a rector measure,

I
I

I
I

I

one can show there do exist closed subsets of £ , e.g.,

In e _ [O,T]: lu(t)l = 1] which have the property that their image

under any map of the form L(y) is compact. (See, for example [2,

Theorem 3] or [5, Theorem i].)

§2. EXAMPLES.

a) Any linear system of the form (6) with 2 as given in (i)

and U(t) convex and compact for each t c [O,T] can be transformed

I
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into an equivalent system which satisfies the hypotheses of V.

Indeed, let X(t), X(O) = I, be a fundamental solution of

the homogeneous system and make the change of variable y(t) = x-l(t)x(t).

Then x satisfies (6) if and only if y satisfies _(t) = x-l(t)B(t)u(t),

o
y(O) = x . This transformed system obviously satisfies the hypotheses

of V, therefore, as is well known_the associated set _(t) is compact

and convex.

b) Consider

Xl = i + sin x2u , Xl(O):

i2 = i - sin x2u , x2(O)-= _ , 0 N u(t) & 2

Since Xl a 0 , i2 a 0 , x e _(t) implies x I _ _ , x2 _ _ there-

fore [f(x,u): u e U} is independent of x e _(t). (It is the segment

of the line Yl + Y2 = 2 with Yl a O, Y2 a 0.) The hypotheses of VI

are satisfied and the attainable set will be compact and convex.

I
I
I
I

I
I

I
I

I
I

I
I
I

I

I
I
I

I
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Abstract_This paper continues the development of a qualitative

theory of stability, recently initiated by the authors, for systems
operating over finite time intervals. The theory is motivated by 1)
the need for a more practical concept of stability than is provided by

the classical theory; and 2) the search for methods for investigating

stability of a system trajectory (either analytically or numerically
given) without the necessity of performing complicated transforma-
tions of the differential equations involved.

The systems studied in this paper are nonautonomous, i.e., they
are under the influence of external forces, and the concept of finite
time stability (precisely defined in the paper) in this case involves the

bounding of trajectories within specified regions of the state space
during a given finite time interval. (The input is assumed to be
bounded by a known quantity during this time interval.)

Sufficient conditions are given for various types of finite time
stability of a system under the influence of perturbing forces which
enter the system equations linearly. These conditions take the form

of existence of "Liapunov-like" functions whose properties differ
significantly from those of classical Liapunov functions. In particular,
there is no requirement of definiteness on such functions or their
derivative.

The remainder of the paper deals with the problem of determin-
ing finite time stability properties of a system from knowledge of the

finite time stability properties of lower-order subsystems which,
when appropriately coupled, form the original system.

An example is given which illustrates some of the concepts dis-
cussed in the paper.

I. INTRODUCTION

N MANY CASES of practical interest, there is con-cern with the behavior of systems over a fixed inter-

val of time; e.g., will a given system exhibit a

response to given stimuli which is contained within cer-

tain specified bounds during the fixed time interval?

Among the multitudinous problems which fall into this

category are: the problem of assuring that a space

vehicle will remain in a specified orbit for a given length

of time in order to complete a set of experiments; the

problem of sending a rocket from a neighborhood of a

point A to a neighborhood of a point B over some nom-

inal trajectory; the problem, in a chemical process, of

keeping the temperature or pressure or some other

parameter within specified bounds. It appears reason-

able to consider such questions within a stability frame-

work, i.e., a system is "stable" if it operates within the

Manuscript received April 4, 1966; revised October 19, 1966.
This research was supportedpartially by the National Aeronautics
and Space Administration under Contract NAS8-11264 and partially
by the Alfred P. Sloan Foundation in the form of a research fellow-
ship to L. Weiss. An early version of this work was presented at
the International Symposium on Differential Equations, Mayaguez,
Puerto Rico, December 1965.

The authors are with the Center for Dynamical Systems, Brown
University, Providence, R. I.

prespecified bounds and is "unstable" if it does not.

However, it is evident that the classical theory of stabil-

ity requires strong modification in order to be relevant

toward the resolution of such stability questions.

Taking inspiration from the discussion of "practical

stability" in the monograph by LaSalle and Lefschetz

[1], the authors began, in a previous paper [2], the

development of a qualitative theory of this type of sta-

bility, which is called finite time stability. The theory

developed thus far parallels, to a certain extent, the

classical Liapunov theory of stability, but differs from

it in a number of significant respects which are evident

from the definitions and theorems.

Finite time stability and instability of systems of the

form

= f(*, 0, (1)

where x is a real n vector (the state vector), was dis-
cussed in [2]. This paper is concerned with finite time
stability of systems under the influence of perturbing
forces, i.e., the systems considered are of the form

= f(x, u, t), (2)

where u is a vector representing a forcing function and,
in general, u=u(x, t).

It is assumed that the usual smoothness conditions

are present so that there is no difficulty with questions
of existence, uniqueness, and continuity of solutions
with respect to initial data.

Finally, it is not required that f(0, 0, t)--0, so that
stability with respect to a set rather than a point can be
discussed without resorting to complicated transforma-
tions.

II. NOTATIONAL PRELIMINARIES

Let X be the state space for (2). Then define

B(a)= {xC X; I!xl[< a}
= {xE x, Ilx[Is a}

5 = [to, to q- T) where t0, T C R 1

V:XX 3--*R I and V(x,t) isC linx and C o int.

VMa(t) = max V(x, t)
II,ll=_

V=_(t) = min V(x, t)
lt*ll=_

dx OV

V(x, t) = grad V(,, t)"7 + O--7"

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
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I
I

I
I

I
I

I

i Let (2) be defined on a time interval [to, to+ T). Then
consider

i D_finition 1
A system (2) is stable under perturbing forces with

respect to the set (a, /3, _, to, T, • ), a<=/3, if, for any t,

trajectory x(t), the conditions Ilx(t0)l[ <a and u(x, t)

<_ for all tC3, all xC(-B(/3)--B(a)) imply I[x(t)I[ </3
for t_ff. 1

Remarks: 1) Obviously, a somewhat more general
definition can be made in which stability is defined with

respect to regions in the state space which are not neces-

sarily balls in the norm topology. Later on, it becomes

useful to make this type of modification of the above

definition. We emphasize that the symbol [[. [1 need not
indicate a true norm.

2) For _ = 0, Definition 1 reduces to that of

finite time stability of (1) as given in reference [2].
3) It is strongly emphasized that the num-

bers a,/3, to, T are all specified a priori in a given prob-
lem. Hence, although there is some analogy to the usual

classical definition of stability under perturbations, it

is clear that with respect to the aforementioned set, a

system which is stable in the classical sense may be
unstable in the sense of Definition 1 and vice versa. The

next definitions are finite time analogs of asymptotic

stability under perturbations. Since the word "asymp-
totic" has little meaning in the finite time context, the
word "contractive" is used instead.

I

I
I

I
I

I
I

Definition g

A system (2) is quasi-contractively stable under per-

turbingforces with respect to (a,/3, 3', _, to, T, • ), a--</3

<3', if, for any trajectory x(t), the conditions x(to) <_
and Hu(x, t)][ <_ for all xC(B(3,)--B(a)), all rE3 imply

1) stability under perturbing forces with respect to
(_, 3",_, to, T, II"ll); 2) there exists hE(to, to+T) such

that ]lx(t)l 1<13 for all rE(t1, to+T).

Definition 3

A system (2) is contractively stable under perturbing

forces with respect to (a, /3, % _, to, T, • ), /3<a<3",

if, for any trajectory x(t), the conditions x(to) [ <or and
]lu(x, t)l] =<e for all xC(B(.y')--B(/3)), all rE3 imply

1) stability under perturbing forces with respect to
(a, 3", _, to, T, "ll) and 2) there exists tiC(to, to+T)

such that [Ix(t) </3 for all tE(tx, to+T).

Note: Definition (2) with ,=0 does not correspond
to the definition of quasi-contractive stability given in

[2] for system (1). It is believed that the concept of

quasi-contractive stability defined above is the more
natural one.

I For convenience, we have used the same symbol to denote the
"length" of x(to) as well as u(x, t). The same measure of length need
not, however, be applied to both of them.

\- t I

Ilufx, t)ll _ _ Ilu(x, t)ll _ _ [lu(x, t)ll _
x_(B($) -- B(a)) x,(B(3.) -- B(a)) x,(B(----_)-- B(13)

rE5 rE5 rE5

Fig. 1. Stability--Def. 1 Stability--Def. 2 Stability--Def. 3

Illustrations of the three types of stability defined

above are given in Fig. 1 in terms of trajectory behavior.

IV. THEOREMS ON STABILITY UNDER

PERTURBING FORCES

The definitions of stability given in Section III apply

to every general type of system (2). The theorems given

in this section yield sufficient conditions for stability of
a special case of (2), namely, systems of the form

= f(x, t) + u(x, t). (3)

Here u is an n vector which, as indicated above enters

the system equation linearly.

It turns out to be convenient to separate the case

a </3 from the case a =/3 when discussing sufficient con-
ditions for a system to be stable in the sense of defini-
tion.

A theorem for the former case will be stated and

proved. The case a =/3 is left as an exercise.

Theorem 1

A system (3) is stable under perturbing forces with

respect to (a, /3, _, to, T), II"ll), o</3, if there exists a
real-valued function V(x, t) and real-valued functions

4_(t), p(t) integrable on 3 such that

1) Ilgrad V(x, 011 _(t> for x E (B-(0) -- B(a)), t E

2) v_(_, t) < _(t) for x E (B(---_)- B(,O), t E

where VS = V i,,,,,>-o

f"3) [¢(t) + _o(t)ldt <=V,.O(t2)- V_(t,),

tx, t_ E 3, t_ > tt.

Proof: Let x(t) be an arbitrary trajectory of (3) such
that ][x(t0)l[ <a. Assume there exists t,E(to, to+T), the

first such point in 3 such that x(t_) =/3. Then there

exists h<t,, tiE3, such that Ilx(t_)l[=a. Then

V(x(t), 0 -- V(x(t_), t,) + V(x(_), r)d_, t, _-_t
!

S,'< V_"(tO + V(x(r), r)dr, h < t <= t_.
1

I
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Hence

f t2
v(x(t2), h) <=vM_(t,) + VAx(7), r)dr

1

f"+ grad V. u dr,
!

where l?j is as defined in the hypotheses. Making use of

hypotheses 1) and 2),

f q"¢(t)dt f ,"
V(x(12), 12) < VMa(ll) .Dr_ -_- E []grad V][dt

1

f"< v_,°(h) + [,(0 + _o(¢)idt,
I

and finally, by hypothesis 3),

V(x(t_), t_) < V,_O(h)

which implies that llx(t,)ll a contradiction to the

original assumption. Hence t_C3 and therefore IIx(t)ll
</3 for all tE3. Since this argument is independent of
the exact value of x(to) or the particular' trajectory

chosen, it holds for all trajectories emanating from

B(a), and the theorem is proved.
Remark: One of the more interesting aspects of this

theorem is the not too stirprising fact that, unlike the

classical case, there is no requirement of definiteness or

semidefiniteness on either V or I7.

The same is true for the following theorems which

deal with quasi-contractive and contractive stability

of (3).

Theorem 2

A system (3) is quasi-contractively stable under per-

turbing forces with respect to (a, /3, % e, t0, T, I1"ll),
a <13 <% if there exists a real-valued function V(x, t),
which is C_ in x and C O in t, and four real-valued func-

tions of time 4_1, px, ¢2, p2 which are integrable over 3,
such that

1) I!grad V(x, t)l! < pl(t), t _ 3,

2) [Igrad V(x, t)[ f < p_(t), t _ 3,

3) vs(x, t) < 4_i(t), t C 3,

4) Vs(x, t) < ¢,2(t), t E 5,

x E (B(.y) -- B(a))

x C (B(-_) - BO))

C (B(-_) -- B(_))

x C (B@) -- B(13))

_ t2
5) [$1(t) + _ol(t)]dt < Vm't(t2) -- Vu_'(t,),

1

h, t2 E 3, t2 > tl

6) t°+T[_2(t) + ep2(t)]dt < V,,a(to + T) -- VMO(h),
1

/1E3

7) v(x, to + T) >=V,n°(to+ T), _ E (B('r) -- BO)).

Proof: The system is stable under perturbing forces

with respect to (a, % to, T, 11"1[) by hypotheses 1), 3), 5).

Now, if there is no trajectory x(t) where 1]x(t0H <a which

passes the boundary of B(/3), there is nothing to prove.

Hence, consider an arbitrary trajectory x(t) where

x(to) <a, and suppose there exists txC3 such that

x(h) l=_, and IIx(t)]l>=_for all tE(tl, to+T). Then,

f to+TV(x(to + T), to + T) = V(x(h), h) + V(x(r), r)dr

f to+T= v(x(t,), h) + Vj(x(.O, _-)d_-

f to+T+ grad V.u dr.

From hypotheses 2), 4), and 6) plus the definition of
VM _,

V(x(to + r), to + T)

f to+T f t to+T
<__VMO(h) + 4_2(r)dr + _ []grad V][dr

tl 1

f to+T

t 1

< VMa(h) + Vm¢(to + T) -- VMa(h) = V,,a(to + T).

This is a contradiction by hypothesis 7).
Hence there exists t2E3 such that

t C(t_, lo+ 7").

Remarks: 1) Hypothesis 6) implies that

VMn(to + T) = V,,,O(to + T).

2) If 1) above is difficult to satisfy, one
can restate the theorem with 6 replacing /3 in the hy-

potheses, where 6<ft.

Theorem 3

A system (3) is contractively stable under perturbing
forces with respect to (a, /3, % e, to, T, ][ "I[),/3<a<_',

if there exists a real-valued function V(x, t) and four

real-valued functions of time q91, 01, ¢2, p2 which are

integrable over 3 such that

1) [Igrad V(x, t)]]__<pl(l), t _ 3, x _ (S('t) -- S(a))

2) [[grad V(x, t)[I < o_(0, t C 3, • _ (B(v) -- B(/3))

3) Vf(x, _) <_ (_l(t), t _ 3, x _ (B('r) -- B(a))

4) Vs(x, t) < 4_(t), t _ 3, x _ (B@) -- B(B))

f"5) [qh(t) + em(t)]dt < V,#'(h) -- VM"(h),
1

lx, t2 _ 3, h > h

I

I

I

I

I
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(_+r SO that (1) can be written as
I 6) [#,(t) + _m(t)]dt < VJ(to + 1") - V_,,, w = g(w, z, t) (4a)

where VM, = max V(x, to)

I fy7) [,,(t) + _ t,,(t)]dt< VJ(to + T) - V_,0(r),

rE3

I 8) V(x, to + 1") >= V..B(to + r), x E (B(.y) -- B(B)).

Proof: By hypotheses 1), 3), 5), the system is stable

I under perturbing forces with respect to (or, % t0, T, • ).Consider an arbitrary trajectory x(t), where Ix(to)
<or, and suppose [Ix(t)lI >/3 for all tC5. Then, product spaces.To ar _wer th,

I" J ,ot'tV(x(r), r)dr " venient to defirV(x(t), t) -- V(x(to), to) -l- system 11) whiq

(4a), (4b).

f' Let H° I [ _
be

I = v(x(t0), to) + vAx(,), _)¢,
a

•"to - l[_

+ I)[grad V(x(r), r)]-[u(x(r), r)]dr For example,
I Euclidian norm

t components of x(t).

N V(x(to), to) q- _'tl, VI(x(r)' r)dr Let Da×bCR" be

1 , x(t) Do. IIx(t)ll
+ _I0 Ilgrad V(x(_), ")ll .llu(x(_), r)l[dr Then the following

I I/[,,(r)+,o,(r)]dr. Definition4< V_, + A system (1) wit

with re: pect to (D_t.

I Hence, from hypothesis 6), if for my trajectc
V(x(to + T), to + T) CDox_ for all tE3.

I < VMo + V,,a(to + T) -- VM, = V_(to + T).
But, by hypothesis 8), this is a contradiction; hence,

there exists txE5 for which Ilk<t011</3.The remainder

I of the proof now follows that of Theorem 2 using hy-potheses 2), 4), 8), 7).

V. FINITE TIME STABILITY ON PRODUCT SPACES

I One of the desirable goals in the development of any
theory of stability is to be able to determine the sta-

bility properties of a complicated system by knowing

I stability properties of lower-order (simpler) subsystems

I

I

I

= h(z, w, t). (4b)

The question to be answered is the following. If it is

known that the systems (4a), (4b) are finite time stable
over some given time interval in the sense of Definition

1 (with respect to certain fixed parameters), what does
that imply about the finite time stability characteristics

of (1) over the same given time interval? Following

Lefschetz's [3] terminology for classical stability, this

problem is referred to as one in finite time stability on

To answer the preceding question precisely, it is con-

venient to defne a concept of finite time stability for

system (1) which takes account of the decomposition

Let ]l "H* be a functional on R" such that

[[_(t)ll*= l[w(t)l[*+ [)(t)H*.

For example, II "]]* might represent the square of the
Euclidian norm or the sum of the absolute values of the

Let D.xbCR" be a set such that

x<t) E O.xb _ IIx<t)ll*< + b, IIw(t)ll*< t[ (t)ll*< b.

Then the following definition is given:

A system (1) with decomposition (4a), (4b) is stable

with respect to (D_ix_, D_x,, to, T, II "ll*), a,<=/3, a,-<3,,

if for any trajectory x(t), x(to)ED,,x,, implies x(t)

\

/

which, when coupled together in appropriate fashion,

form the original system.
In general this is rather difficult to achieve, but cer-

tain results along this line are immediately available
in the case of finite time stability.

Consider a system (1) and suppose the state vector x

is partitioned as

Fig. 2. Stability--Def. 4.

Stability in the sense of Definition 4 is illustrated in

Fig. 2.
Contractive stability can also be defined in this con-

text as follows:

I
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Definition 5

A system (1) with decomposition (4a), (4b) is contrac-

tively stable with respect to (D_x_, D_Ix_, Dvlx,_, to,

T, }1"1]*),/31<a'<3",/31 <a2<_'_, if

1) it is stable with respect to (Da,×_2, D,,×,,, to, T,

IIll*)
2) for every trajectory x(t) where x(to) _D_,×,,,, there

exists t_C(to, to+T) such that x(t)CD_×_, for all

tE(tx, to+T).
The following results are easy consequences of the

above definitions.

Theorem 4

If (4a) is stable under perturbing forces with respect

to (a_,/3, 5', to, T, ]] "]1"), a__-</3,and (4b) is stable under

perturbing forces with respect to (a2, "/,/3, to, T, [1"l]*),

a2_-<_', then the system (1) with decomposition

(4a), (4b) is stable with respect to (D,,x,v D:x_, t,,,

T, IIII*)
Proof: Let x(t) be an arbitrary trajectory of (1) such

that x(to)ED,,x,2. We are considering z(t) in (4a) and

w(t) in (4b) as forcing functions. Assume there exists
txE3 the first such time at which llz(tl)]l*=_,. Then

IIz(t)ll*<'), for to<t<tl. But by the first stated hy-
pothesis of the theorem, this implies that liw<t)[l*< 
for all tE [to, tx]. Then if t2C3 is the first value of t

for which Iiw(t)]l*=/3, obviously t2>fi.
Now consider (4b). By the second hypothesis of the

theorem plus the above fact, [Iz(tx)[l* <'y. This contra-

dicts the earlier assumption about fi, i.e., that tlC3.

Therefore llw(t)ll*<t , II (t)ll*< for all tC3 and so

x(t) CD_×, for all tC3.

Theorem 5

If (4a) is contractively stable under perturbing forces

with respect to (a,, /3x, _,, _, to, T, I[ I1") and <4b)is

contractively stable under perturbing forces with respect

to (a2,/32, _, "l, to, T, I[ "H*),/32<°_2--<6, then the system

(1) with decomposition (4a), (4b) is contractively stable

with respect to (D,,x,,, D,x_, Do,xo_, to, T, II "ll*).

Proof: Stability of (1) with respect to (D,,x,,, D,xs,

to,T, II"ll*)followsimmediately from Theorem 4.
Now let x(t) be any trajectory of (1) such that

x(to) ED,,,x,,... From the hypothesis on (4a), there exists
t_E (to, to+ T) such that [Iw(t)ll* </3_ for all tC (t_, to+ T);

and from the hypothesis on (4b), there exists t_

C(to, to+T) such that ll (t)ll*</3 for tC(t2, to+T).

Hence x(t)ED_,×o, for all tC(max (t_, t2), to+ T).

Remarks: 1) A definition and theorem can easily be

stated which is analogous to Definition 5 and Theorem

5, for quasi-contractive stability. This is left as an
exercise for the reader.

2) The usefulness of Theorems 4 and 5 de-

pends, of course, on having means available for testing

(4a) and (4b) for finite time stalSility under perturbing

forces. In the specific case where these forces enter the

AUTOMATIC CONTROL

system equation linearly as in (3), i.e., in the case where

(4a) and (4b) are linearly coupled to form (1), Theorem

1 (or 2 or 3 depending on what is being sought) can, in

principle, be utilized to obtain information about sta-

bility under perturbing forces for (4a) and (4b). A

straightforward application of Theorem 4 or 5 then

yields the desired information about the finite time
stability characteristics of (1).

VI. AN EXAMPLE

The following simple example, a modification of one

given by Cesari [4], is presented to illustrate some of

the salient features of finite time stability. Consider the

system

_, = f,(x_, x_, t) + u_(x_, x_, t)

_.. = f_(x,, x_.,t) + u_(x,, x_, t).

Let the system, with the perturbing terms u_ set to

zero, be such that it can be written in the form

1 Oh(t, 4_)
- , d=-O

r h(t, dp) Ot

where h=l-f-t 3 sin _ ¢h/1-k-tA-t _ sin * 4_. It can be easily

seen that this unperturbed system is unstable in the

classical sense. Yet, this set of equations displays char-

acteristics which, over finite periods of time, make it

resemble a stable system. In fact, the above perturbed

system is contractively stable with respect to (a, a/2,

2o_, x/2ct/lO, 0, x/2/3, Euclidian norm). This can be seen

by making use of Theorem 3 and letting V=xa*-4-x_ _,

p_(t) =0_(t) = 4a, and 4)_(t) =q_(t) = 8a_( - 1-4-t+2t'_).

(The reader can easily check that conditions 5), 6), 7),

and 8) of the theorem are satisfied.)

VII. COSCLUSIONS

The qualitative theory of finite time stability has

been extended, in this paper, to systems under the influ-
ence of external forces. In so doing, the following im-

portant facts should be noted:

1) The definitions of stability upon which the theory

is based are of a much more practical nature than those

of classical stability. Moreover, as indicated earlier, and

particularly in the example in Section VI, systems which

are stable in the classical sense may be unstable in the

finite time sense and vice versa. (It might well be

desirable to put a rocket into an unstable orbit if that

orbit is particularly well suited for performance of cer-

tain experiments, providing the orbit is finite time

stable over the interval of time needed to complete the

experiments.)

2) The sufficient conditions given for determining

finite time stability under perturbing forces involve the

existence of "Liapunov-like" functions, whose required

properties are significantly less stringent (e.g. from the

point of view of computerization) than those for class-
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ical Liapunov functions. Furtherlnore, the problem

of finite time stability with respect to an analytically or

numerically defined trajectory can easily be handled

within the format of the theorems presented in this

paper without any recourse to the complicated trans-

formations which are needed in the classical theory.

3) It should be apparent that any example in classical

stability in which a Liapunov function is exhibited can

be converted into a finite time stability example in

which the Liapunov function plays the role of the func-
tion V in our theorems.

4) All the theorems in this paper yield sufficient con-

ditions for finite time stability. To date, no converse

theorems have been developed for this type of stability

so that the determination of the necessity of the stated

hypotheses is an open research problem.
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STABILITY PROBLEMS OF SOLUTIONS OF DIFFERENTIAL EQUATIONS,

Proceedings of the NATO Advanced Study Institute, Padua,

Italy, Edizioni "Oderisi", Gubbio, 1966 , 99-106.

LIAPUNOV' S SECOND METHOD*

by

J. P. LaSalle

Center for Dynamical Systems

Brown University

i. Introduction.

In the preceding paper [ i] an introduction to Liapunov' s

second or direct method was given based on ideas originally introduced

by the author of this paper_ and we wish to continue in that direction.

We shall give first of all a statement of what can be called the

fundamental theorem of stability (Theorem l) which extends somewhat

and includes the results of [1]. This fundamental theorem is based

on a broader definition of a Liapunov function and makes use of the

invariance property of limit sets of solutions of autonomous

differential equations. It also has an important bearing on the

extension of stability theory to more general dynamical systems and

to applications of the theory.

By means of a simple example we will illustrate that this

theorem takes us beyond the classical theory of Liapunov and shows

how one may study the qualitative behavior of systems in the large.

The techniques are not unknown but Theorem 1 now brings them within

This research was supported in part by the National Aeronautics and

Space Administration under Grant No. NGR-40-O02-O19 and under Contract

No. NAS8-11264, in part by the United States Air Force through the

Air Force Office of Scientific Research under Grant No. AF-AFOSR-693-65

and in part by the United States Army Research Office, Durham, under
Contract No. DA_31_124_ARO_D_270.
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the domain of Liapunov's method while at the same time unifying the

whole theory. The previous paper [ i] demonstrated this unification

for theorems on stability. We will indicate -- and this is shown also

by the example -- how one obtains from this same fundamental theorem

criteria for instability. Up to this point we shall have confined

ourselves to autonomous systems and basic to Theorem i is the fact

that the limit sets of solutions of autonomous systems are invariant

sets. We certainly expect therefore that Theorem i will have to be

modified for nonautonomous systems and following Yoshizawa in [2]

we give in Theorem 2 the analogous theorem for nonautonomous systems.

As to be expected the information given by Liapunov functions is

now less precise but by means of an example it is shown that the

conclusion of the theorem given here is, however, the "best possible".

There are types of nonautonomous systems where the limit sets of

solutions have an invariance property that enables one to improve

Theorem 2. This is discussed in Section 3.

More recently Hale in [3] has shown that properly interpreted

the solutions of autonomous functional differential equations have

limit sets which are invariant. With modifications this gives him

a stability theory quite similar to that for autonomous differential

equations. Functional differential equations which include delay-

differential equations are mathematical models for systems whose

future behavior depends upon a portion or all of its past history.
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They can be expected to be of increasing importance in economics,

biology 2 and control. Hale's work carries us so far beyond our

geometric intuition that it is here that we can appreciate the

necessity of a theory to guide us and his work suggests how the

theory can be developed for more general dynamical systems. Since

his paper [3] is complete, and is well illustrated by examples, his

results are not s_mmarlzed here.

2, Autonomous systems.

For the sake of simplicity we shall assume with some

exceptions that all functions introduced are C1 and as much as

possible adopt the notations and definitions of Ill. With f an

arbitrary C1 function on Rn to R n we consider first the ordinary

differential equation (_ = d__x)
dt

(i) _ -- f(x).

In order not to have to confine ourselves to bounded solutions

we compactify Rn by adding the point at infinity where the distance

d(_, x) of x to infinity is Ixl -1. Thus, if P is a set in Rn

and we define P* = P U {_), then a function _(t) is said to

approach P* if d(P*, _(t)) _0 as t -_. This also gives a

meaning to the statement that _ is a limit point of $(t), which

is not necessarily the same as saying $(t) _ _ as t _ _. When

I
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_(t) is a solution of (i) it may happen that its maximum positive

interval of definition is [0, x). This causes no difficulty.

We need only replace _ by T. Understanding this we will usually

ignore this point and speak as though all solutions are defined on

Let G be an arbitrary set in R n

function on Rn to R. We shall say that V

on G for the system (i) if V = (grad V)-f does not change sign

on G. We define (G is the closure of G)

and let V be a CI

is a Liapunov function

E: Ix ; _(x) : O, x c_} ;

M will denote the largest invariant set in E and M* = M U[_].

It then follows easily from the invariance property of limit sets

of solutions of (1) that

Theorem i. If V is a Liapunov function on G for the system (i)

and if a solution x(t) of (i) remains in G for all t > 0 (t < 0),

then x(t) approaches M* as t _ (t _-_). If M is bounded,

then either x(t) -_M or x(t) -_ as t _ (t -_-_).

This theorem states that a Liapunov function V on G

locates all possible positive and negative limit sets of solutions

which remain in G for t > 0 or t < O. The problem in applying

the theorem is to find a "good" Liapunov function. A constant function
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V is always a Liapunov function for the whole state space Rn but,

of course, gives no information. Here E = M = Rn. The theorem

does, however, make it possible to obtain more information about the

I
I

I

asymptotic behavior of systems with Liapunov functions not as severly

restricted as those of the classical theory. It is also true that

every C1 function V is a Liapunov function on the region V _ 0

(or V _ 0) but this may or may not be helpful. The following

simple example illustrates some features of this result and how it

I
I
I

I

may be applied and how one obtains additional information by using

more than one Liapunov function. It is not always this easy, and

this example was manufactured for this purpose. In actuality it is

often easier using Liapunov functions to synthesize a system to

have a particular behavior than it is to analyze a given system, and

this is proving to be true in the design of control systems.

The second order system

I

I
(2)

= -2xy

_ = -x+ y+ xy -

I has three equilibrium points: PI = (0, i), P2 = (0, -i)

I

I

and

P3 = (0, 0). The eigenvalues of the linear approximation about P1

are -2, -2; about P2 they are -2, 2 and about P3 are 0, 1.

Thus P1 is asymptotically stable, P2 is a saddle point and is

unstable, and P3 is unstable. The linear approximation does not

I

I
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given any information about the region of attraction (of asymptotic

stability) about PI or about the character of the equilibrium

point P3" (See Figure i.)

We have first of all for each of the four quadrants the

obvious Liapunov function V 1 = x since V = - 2xy. For each of

these quadrants E 1 is the union of the x- and y-axes, and since

= 0 when x = 0 and @ = -x when y = O, we see that M 1 is

the y-axis. It is clear, for example, that no solution starting

in the 4th quadrant can leave for t > 0 and cannot have a limit

point on M I. Hence all solutions starting in the 4th quadrant

approach _ as t -_ _.

2 2y2( Another Liapunov function is V 2 = x - y ; V2= -x-l) =

= - 2y2(V2 + i) and V 2 is a Liapunov function for the regions

G I : V 2 < -i and G2: V 2 >-i. Here E 2 is the x-axis and the

parabola V 2 = -I, which is an integral, and M 2 is the curve

V 2 =-i and the origin P3" The region G I and G2 are invariant

sets. In GI, V2 > 0 and no solution can approach M2 as t _-_.

Therefore every solution starting in GI approaches _ as t _-_.

Note next that each solution starting in x < 0 remains in this

region and is bounded for t > O. Therefore the only possible

positive limit points are the intersection of M I and M2 which

consists of the three equilibrium points PI' P2 and P3" To the

left of P2, k < 0 and to the left of P3' V2 < 0 so that every
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solution starting in the left-half plane x < 0 must approach

P1 as t -_ _. Similarly, one can see that every solution starting

in this half-plane inside G2 approaches P_ as t -_ _ Alsc _

is easy to see that every solution in the _ ÷_s_ quadrant abcve V^ = C

approaches P1 as t -_ ®. Hence the 2nd and 3rd quadrants ani this

portion of the 1st quadrant are in the region cf attraction of P..

Below V 2 = 0 in the 1st quadrant there must be a solution which

approaches P3 as t _ _ and this solution is the " " __o_n_zzy cf the

region of attraction of Pl" We know this must happen since the

boundary of the region of attraction is an invariant set and the

region of attraction does not include the 4th quadrant.

The following corollary is a 5irect consequence of Theorem

1 and illustrates how instability results can be obtained:

Corollary 1. Assume inside a set G that V V > 0 and on the

boundary of G that V = 0. Then every sclution cf (1) starting

in G approaches _ as t _ _ (or possibly in finite time).

Proof: The assumptions imply that every solution s-ar_.ing in C-

remains inside G for t > O _nd in fac_ cannot even have a w_sitive

limit point on the boundary of G. Since G ? M is the emp'.y set,

it must _ _hat every solution approaches _ as t -_ = (it could

have finite escape time).

In a _er sir/lar to the above _roof one can obtain

I
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v

Cetaev' s instability theorem as a corollary of Theorem i.

Corollary 2. Let G be an open set, let p be an equilibrium
O

point on the boundary of Go, and let N be a neighborhood of p.

If V(x)V(x)>O for x in G: Go O N and V(x): O for x

on the boundary of G o inside N, then p is unstable.

From the point of view of applications the following is one

of the most useful results.

Corollary 5. Assume that a component G of the set defined by

V(x) < L is bounded, V(x) _ 0 for x c G, and M_ _G where

M° = M N G. Then M° is an attractor as t _ and G is in the

region of attraction to M°. If V is constant on the boundary of

M_, then M° is a stable attractor (is asymptotically stable).

Thus in the above corollary when M ° is a single point

p, V is constant on M° and the point p will be asymptotically

stable with G providing an estimate of its stability. This is

without any assumption that V be positive definite. However,

in applying this theorem where the Liapunov function is itself to

provide a positively invariant set one will usually look for a

Liapunov function that is positive definite relative to p. Unless

the set E where V vanishes contains a positively invariant set

other than p, the point p will be a minimum of V so for this

purpose one might expect "good" Liapunov functions to be positive
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definite. On the other hand the simple example above demonstrated

this may not always be the best procedure and one can often do

better using more than one Liapunov function none of which need be

P

positive definite.

3. Nonautonomous systems.

In this section we follow fairly closely the ideas of

Yoshlzawa in [2] although we will not present them with as great a

generality as he acheived. We concern ourselves with the system

(3) _ = f(t, x)

where f is continuous for (t, x) in 9= [0, _) x Rn and is

C 1 on _ with respect to x (or any other of the known conditions

that imply existence and uniqueness of solutions). Here limit sets

of solutions are still defined but they will not in general be

invariant sets. Hence we cannot expect a result as strong as Theorem

1. Theorem 2 below is a modified version of Theorem 1 and is closely

related to Yoshizawa' s Theorem 6 in [2].

Let V(t, x) be a" C 1 function on [0, _) x R n to R.

We shall say that V is a Liapunov function on a set G of R n

if V(t, x) _ 0 and V(t, x) _ - W(x) _ 0 for all t > 0 and all

x in G where W is continuous on Rn to R. We define

(4) E = Ix ; W(x) = O, x e _ } .

I
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Here

n_v _v
= _ + i=iZ _xi fi(t, x)

We then have

Theorem 2. If V

then each solution x(t)

approaches E* = E U[_]

conditions is satisfied:

is a Liapunov function on G for equation (3),

of (3) that remains in G for all t > t
O

as t _ _, provided one of the following

there is a neighborhood N of p

is bounded for all t > 0 and

is bounded from above or

(i) For each p _

such that If(t, x) l

all x in N

(ii) W is C1 and W(t, x)

below along each solution which remains in G for all

t > O.

If E is bounded, then each solution of (3) remaining in G for

t > 0 either approaches E or _ as t -+_.

Thus, this theorem is quite similar to Theorem 1 except

that M is replaced by the set E. E is in general larger than

M and the information given is not as precise. Condition (i) is

essentially the same as that used by Yoshizawa. The following

example illustrates a case where (ii) is satisfied and (i) is not

and also shows that in general even for linear nonautonomous systems

this is the best result one can hope to have.
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Consider _ + p(t)_ + x = 0 where p(t) m 5 > 0. An

I equivalent system is

I
k= y

= - x - p(t)y .

!

!

!

!

Since we do not assume that p(t) is bounded from above, condition

2 2 _ = _p(t)y2 _ _5y2(i) is not satisfied. With 2V = x + y , _ .

Thus V is a Liapunov function on the entire state space R2 and

W = 5y 2. It is then clear that each solution is bounded for t > 0.

Now W = 25y_ = -28(xy + y2p(t)) <_ 25xy. Hence condition (ii) is

satisfied. E corresponds to y = 0 and we can conclude that for

I

I
I

each solution y(t) = _(t) _0 as t _. Since the equation

M + (2 + et)k + x = 0 has a solution x(t) = 1 + e-t this we see

is the best possible result without further restrictions on p(t).

It also shows that Theorem 1 is not true for nonautonomous systems.

Here M is the origin and if Theorem 1 held for nonautonomous

I
systems this would imply that the origin is asymptotically stable

which in the example it certainly is not.

I
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In using Theorem 2 it is necessary to be able to identify

solutions which remain in G for all positive t. We now look at

this problem. If the Liapunov function V(x) does not depend on t,

define

Qt : {x ; v(x)__I ] .

I
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It is then clear that the following is true:

Lemma i. If V(x) _ 0 for all t _ 0 and all x in G and _l

is a component of QL which is contained in G# then each solution

0 remains in _Lx(t) of (3) starting in _L at some time t o _

for all t _ t .
0

If the Liapunov function V(t, x) depends on t, define

Q_ = (x ; v(t, x) __l

Ql--°{x ; v(o, x) __l

Ql=+ Ix ; V(t, x) m_ L

for all t _ 0 }

for some t _ 0 ).

o +

It is clear that QL C Q_ C Q L . Let _! denote a component of

o o + will be the
Q_; then G! will be the component of Q! and _L

+

component of Ql which contain _L" We then have

o. +

Lemma 2. If V(t, x) _ 0 for all t _ 0 and all x _ G and G_

is contained in G then

o

a. Each solution starting in _L at time t = 0 remains

+

in _ for all t _ O.

b. Each solution starting in 2_ at any time to _ 0

+
remains in _L for all t _ t o.

These two lemmas combined with Theorem 2 give methods for

estimating the region of attraction of equilibrium points of non-

autonomous systems and for studying their asymptotic behavior in

I
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general. One can also derive from these results sufficient con-

ditions for instability but it still remains true that nonautonomous

systems are more difficult to study and relatively few significant

problems have been solved.

3. Special classes of nonautonomous systems.

Although we cannot in general expect to go beyond Theorem 2

for nonautonomous systems there are some types of such systems where

the invariance properties of the limit sets of their solutions enable

us to obtain precise information on their asymptotic behavior using

Liapunov functions. The simpliest of these are periodic systems

(see [4])

(5) k = f(t, x)

where f(t + T, x) = f(t, x) for all t and x. Here the limit

sets of solutions have an invariance property somewhat different

from autonomous system. Suppose that P C Rn is a limit set of a

solution x(t) of (5). Then P is invariant in the following sense:

if p is contained in P, then there is a solution of (5) which

remains in P for all t in (-_, _). This means that if one starts

a solution at p at the proper time it will remain in P for all

t. However, this is sufficient to obtain a theorem quite similar

to Theorem 1.

I
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T

function on G

sign for x in

x e _] and let

the property that (t, x(t)) is in E

largest invariant set relative to E.

If V(t, x) is C I Rnon R × and is periodic of period

and G is an arbitrary set in Rn, we say that V is a Liapunov

for the periodic system (5) if V does not change

G and all t. Define E = [(t, x); V(t, x) = O,

M be the union of all solutions x(t) of (5) with

for all t. M is called the

theorem for periodic systems:

One then obtains the following

Theorem 3. If V is a Liapunov function on G for the periodic

system (5), then each solution of (5) which remains in G for all

t > 0 (t < O) approaches M* = M U[m} as t _ (t _-_). If M

is bounded, then either x(t) _M or x(t) _ as t _ (t _-_).

Recently in [5] Miller has shown that the limit sets of

almost periodic systems have an invariance property and one then

obtains a similar theorem for almost periodic systems. These results

provide improved methods for studying these classes of nonautonomous

systems. This periodic version and Miller's almost periodic version

of Theorem I are not as well known as they should be in spite of the

fact it would seem that the difficulty in applying them is not much

greater than for autonomous system.

A simple example is the following:
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_=y

y = -(a + cos t)x - by .

With

2
V x + (a + cos t) -1

2
= y

= - _(a + cos t)-l(2b

If a > 1 and 2b_ > l, then V __ 0

function on the plane R2. The form of V

sin t y2a + cos t) '

and V is a Liapunov

implies that the origin

is stable and that all solutions are bounded for t > 0. Here

E = {(t, x, 0); -_ < t < _ , -_ < x < _ ] but M is simply the

origin. Therefore for a > 1 and 2b a_-l > 1 the origin is

asymptotically stable in the large.

As has been shown by 0pial in [6] and Markus in [7] the

solution of what may be called "asymptotically autonomous" systems

have limit sets with an invariance property which we will explain

in a minute. In [2] Yoshizawa used this invarlance property and

obtained a result similar to Theorem 4 below.

A system of the form

(6) _ = f(t, x) = F(x) + fl(t, x) + f2(t, x)

will be said to be asymptotically autonomous if (i)(Markus) fl(t, x)

approaches zero as t -_ _ uniformly for x in an arbitrary compact

I
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0o

set of Rn, (ii)(Opial) f If2(t, q_(t)Idt < ® for all $(t)
0

continuous and bounded on [0, _) to R n. The combined results

of Markus and 0pial then state that the positive limit sets of

solutions of (6) are invariant sets of k = F(x). This then leads

immediately, as a consequence of Theorem 2 to the following:

Theorem 4. If V is a Liapunov function on G for the asymptotically

autonomous system (6), then each solution of (6) which remains in G

for all t > 0 approaches M* = M U[_] , where M is the largest

invariant set of k = F(x) in E, provided f2 satisfies condition

(i) of Theorem 2 or W satisfies condition (ii) of Theorem 2.

It turns out to be useful in order to apply this result

to nonautonomous systems (3) which are not asymptotically autonomous

to give also the following version of this theorem.

Theorem 4. If in addition to the conditions of Theorem 2 it is

known that the positive limit set of x(t) is an invariant set of

= G(x), then x(t) _ M* = M U[_] where M is the largest invariant

set of _ = G(x) in E.

The example

(7)
_=y

= - x - p(t)y , 0 < 5 __ p(t)
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considered before can again be used to illustrate the above theorem

and to show how it can be applied even when the original system is

not asymptotically autonomous. Let (_(t), y(t)) be any solution

of (7). As shown previously we know it is bounded for

that y(t) -_0 as t -_®. Assume now in addition that

bounded from above: 0 < 8 __p(t) -_m for all t >0.

for this particular solution the system

t >0 and

p(t) is

Then consider

_=y

= - x - p(t)y(t) .

Certainly _(t), _(t) is a solution, and this system is asymptotically

autonomous to (*) _ = y, _ = - x . Therefore the positive limit

set of (_(t), _(t)) is an invariant set of (*) and must also lie

on the x-axis. Hence its positive limit set is the origin. This

means that when 0 < 5 _ p(t) _ m for all t >0 the system (7)

is asymptotically stable in the large.
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AN INVARIANCE PRINCIPLE IN THE THEORY OF STABILITY

by

J. P. LaSalle

Center for Dynamical Systems

Brown University

i. Introduction.

The purpose of this paper is to give a unified presenta-

tion of Liapunov's theory of stability that includes the classical

Liapunov theorems on stability and instability as well as their

more recent extensions. The idea being exploited here had its

beginnings some time ago. It was, however, the use made of this

idea by Yoshizawa in [i] in his study of nonautonomous differential

equations and by Hale in [2] in his study of autonomous functional

differential equations that caused the author to return to this

subject and to adopt the general approach and point of view of this

paper. This produces some new results for dynamical systems defined

by ordinary differential equations which demonstrate the essential

nature of a Liapunov function and which may be useful in applications.

Of greater importance, however, is the possibility, as already in-

dicated by Hale's results for functional differential equations,
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Contract No. DA-31-124-ARO-D-270.
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that these ideas can be extended to more general classes of dynam-

ical systems. It is hoped, for instance, that it may be possible

to do this for somespecial types of dynamicalsystems defined by

partial differential equations.

In section 2 we present somebasic results for ordinary

differential equations. Theorem1 is a fundamental stability

theorem for nonautonomoussystems and is a modified version of

Yoshizawa's Theorem6 in Ill. A simple example shows that the

conclusion of this theorem is the best possible. However, when-

ever the limit sets of solutions are known to have an invariance

property then sharper results can be obtained. This "invariance

principle" explains the title of this paper. It had its origin for

autonomousand periodic systems in [3] - [5]_ although we present

here improved versions of those results. Miller in [6] has estab-

lished an invariance property for almost periodic systems and ob-

tains thereby a similar stability theorem for almost periodic

systems. Since little attention has been paid to theorems which

makepossible estimates of regions of attraction (regions of asymp-

totic stability) for nonautonomoussystems results of this type are

included. Section 3 is devoted to a brief discussion of someof

Hale's recent results [2] for autonomousfunctional differential

equations.
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2. Ordinary differential equations.
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Consider the system i
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= f(t,x) (i)

where x is an n-vector, f is a continuous function on Rn+l

to Rn and satisfies any one of the conditions guaranteeing unique-

ness of solutions For each x in Rn• we define Ixl =

2 2 l

(xI + + Xn)2 , and for E a closed set in Rn•-- we define
3

d(x,E) = Min [Ix-yl: y in E). Since we do not wish to confine our-

selves to bounded solutions, we introduce the point at _ and

define d(x,-) = Ixl -I . Thus when we write E* = E U[-], we shall

mean d(x,E*) : Min[d(x,E), d(x,--)]. If

(I), we say that x(t) approaches E as

as t _ _. If we can find such a set E,

formation about the asymptotic behavior of

x(t) is a solution of

t -_ if d(x(t),E) -_0

we have obtained in-

x(t) as t _®. The

best that we could hope to do is to find the smallest closed set

that x(t) approaches as t _ _. This set _ is called the

positive limit set of x(t) and the points p in _ are called

the positive limit points of x(t). In exactly the same way one

defines x(t) _ E as t _ -_ , negative limit sets, and negative

limit points. This is exactly G. D. Birkhoff's concept of limit

sets. A point p is a positive limit point of x(t) if and only

if there is a sequence of times tn approaching _ as n _ and

such that X(tn) _p as n _ . In the above it may be that the

maximal interval of definition of x(t) is [0,_) This causes

no difficulty since in the results to be presented here we need

only with respect to time t replace _ by x. We usually ignore

I
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this possibility and speak as though our solutions are defined on

[o,®) or (-._,_) .

CI RnLet V(b,x) be a function on [0,_) x to R, and

let G be any set in R n . We shall say that V is a Liapunov

function on G for equation (1)if V(t,x) __ 0 and V(t,x) __

-W(x) __ 0 for all t > 0 and all x in G where W is

H Acontinuous on to R and

n

_= _v + Z _v f..
N i=l _. 1

1

We define (G is the closure of G)

E = [x, W(x) : 0, x in G].

The following result is then a modified but closely re-

lated version of Yoshizawa's Theorem 6 in [i].

THEOREM i. If V is a Liapunov function on G for equation (i)

then each solution x(t) of (1) that remains in G for all

> 0 approaches E* = EU [_] as t -_ _ provided one oft>t o -

the following conditions is satisfied:

(i) For each p in G there is a neighborhood i_ of

p such that If(t_x)l is bounded for all t > 0 and

all x in N.

(ii) W is C1 and W is bounded from above or below

along each solution which remains in G for all

t > t __ 0 .
0
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If E is bounded, then each solution of (i) that remains in G

for t _ t _ 0 either approaches E or _ as t -_ .
o

Thus this theorem explains precisely the nature of the

information given by a Liapunov function. A Liapunov function

relative to a set G defines a set E which under the conditions

of the theorem contains (locates) all the positive limit sets of

solutions which for positive time remain in G. The problem in

applying the result is to find "good" Liapunov functions. For

instance, the zero function V = 0 is a Liapunov function for the

whole space Rn smd condition (ii) is satisfied but gives no in-

information since E = Rn . It is trivial but useful for appli-

cations to note that if V 1 and V2 are Liapunov functions on G,

then V = V1 + V2 is also a Liapunov function and E = E In E 2 .

If E is smaller than either E 1 or E2 , then V is a "better"

Liapunov function than either E 1 or E 2 and is always at least as

"good" as either of the two.

Condition (i) of Theorem 1 is essentially the one used

by Yoshizawa. We now look at a simple example where condition (ii)

is satisfied and condition (i) is not. The example also shows that

the conclusion of the theorem is the best possible. Consider

2 2
"_ + p(t)_ + x = 0 where p(t) __ 8 _ 0 . Define 2V = x + y ,

where y = _ . Then _ = _p(t)y2 _ _ _y2 and V is a Liapunov

R2function on . Now W= 8y2 and W = 28y_ = -28(xy + p(t)_ 2)

-28xy. Since all solutions are evidently bounded for all t _ 0,

I
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condition (ii) is satisfied. Here E is the x-axis (y = O)

and for each solution x(t), y(t) = i(t) _ 0 as t -_ _ . Noting

that the equation "_ + (2 + et)i + x = 0 has a solution

x(t) = i + e-t 3 we see that this is the best possible result with-

out further restrictions on p .

In order to use Theorem i there must be some means of

determining which solutions remain in G . The following corollary_

which is an obvious consequence of Theorem i, gives one way of

doing this and also provides for nonautonomous systems a method for

estimating regions of attraction.

Corollary i. Assume that there exist continuous functions u(x)

and v(x) on R n to R such that u(x) __ V(t,x) __ v(x) for all

t __ 0 . Define Q_ = Ix ; u(x) < _] and let G+ be a component

of Q_ . Let G denote the component of Q_ = [x ; v(x) < h]

containing G+ . If V is a Liapunov f_anction on G for (1) and

the conditions of Theorem 1 are satisfied, then each solution of

0 remains in G for all(i) starting in G+ at any time to =

t > t and approaches E* as t _ . If G is bounded and
O

E ° = E N GC G+ _ then E ° is an attractor and G+ is in its

region of attraction.

In general we know that if x(t) is a solution of

(1)--in fact, if x(t) is any continuous function on R to Rn--

then its positive limit set is closed and connected. If x(t) is

bounded, then its positive limit set is compact. There are, how-
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ever, special classes of differential equations where the limit

sets of solutions have an additional invariance property which

makes possible a refinement of Theorem 1.

the autonomous systems

= f(x)

The limit sets of solutions of (3) are invariant sets.

The first of these are

(3)

If x(t)

is defined on [0,_) and if p is a positive limit point of x(t),

then the points on the solution through p on its maximal inter-

val of definition are positive limit points of x(t). If x(t) is

bounded for t > 0 , then it is defined on [0,_), its positive

limit set _ is compact, nonempty and solutions through points

p of _ are defined on (-_,-) (i.e., _ is invariant). If

the maximal domain of definition of x(t) for t > 0 is finite,

then x(t) has no finite positive limit points: that is, if the

maximal interval of definition of x(t) for t > 0 is [0,6),

then x(t) _ as t _ . As we have said before, we will always

speak as though our solutions are defined on (-_,_) and it should

be remembered that finite escape time is always a possibility unless

there is, as for example in Corollary 2 below; some condition that

rules it out. In Corollary 3 below, the solutions might well go to

infinity in finite time.

The invariance property of the limit sets of solutions

of autonomous systems (3) now enables us to refine Theorem i.

Let V be a C1 function on Rn to R . If G is any arbitrary

I
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set in Rn , we say that V is a Liapunov function on G for

equation (3) if V = (grad V)" f does not change sign on G .

Define E = [ x ; x) = 0 , x in _ ] , where G is _he

closure of G . Let M be the largest invariant set in E . M

will be a closed set. The fundamental stability theorem for

autonomous systems is then the following:

THEOREM 2. If V is a Liapunov function on

each solution x(t) of (3) that remains in

(t < O) approaches M* = M U [_) as t _ (t -_-_).

bounded, then either x(t)_M or x(t)_ as t _

G for (3), then

G for all t > 0

If M is

(t_ -_).

This one theorem contains all of the usual Liapunov like

theorems on stability and instability of autonomous systems. Here

however, there are no conditions of definiteness for V or V ,

and it is often possible to obtain stability information about a

system with these more general types of Liapunov functions. The

first corollary below is a stability result which for applications

has been quite useful and the second illustrates how one obtains

information on instability. Cetaev's instability theorem is

similarly an immediate consequence of Theorem 2 (see section 3).

COROLLARY 2. Let G be a component of Q_ = [ x ; V(x) < h ] .

Assume thaL G is bounded, V _ 0 on G , and M ° = M_C G .

Then M ° is an attractor and G is in its region of attraction.

If, in addition, V is constant on the boundary of M° , then
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M ° is a stable attractor.

Note that if M ° consists of a single point p

then p is asymptotically stable and G provides an estimate of

its region of asymptotic stability.

COROLLARY 3. Assume that relative to (3) that V V _ 0 on G

and on the boundary of G that V = 0 . Then each solution of

(3) starting in G approaches _ as t -_ _ (or possibly in

finite time).

There are also some special classes of nonautonomous

systems where the limit sets of solutions have an invariance

property. The simplest of these are periodic systems (see [3]).

= f(t,x) , f(t + T_x) = f(t) for all t and x . (4)

Here in order to avoid introducing the concept of a periodic

approach of a solution of (4) to a set and the concept of a

periodic limit point let us confine ourselves to solutions x(t)

of (4) which are bounded for t _ 0 . Let _ be the positive

limit set of such a solution x(t), and let p be a point in

Then there is a solution of (4) starting at p which remains in

for all t in (-_) ; that is, if one starts at p at the

proper time the solution remains in _ for all time. This is the

sense now in which _ is an invariant set. Let V(t_x) be C1

on R x Rn and periodic in t of period T . For an arbitrary

set G of Rn we say that V is a Liapunov function on G for

I
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for the periodic system (4) if V does not change sign for all

t and all x in G . Define E = [ (t,x); V(t_x) = O_ x in

and let M be the union of all solutions x(t) of (4) with the

property that (t,x(t)) is in E for all t . M could be called

"the largest invariant set relative to _'. One then obtains the

following version of Theorem 2 for periodic systems:

THEOREM 3. If V is a Liapunov function on G for the periodic

system (4), then each solution of (4) that is bounded and remains

in G for all t > 0 (t < 0) approaches M as t _ _ _-_).

In [6] Miller showed that the limit sets of solutions

of almost periodic systems have a similar invariance property and

from this he obtains a result quite like Theorem 3 for almost

periodic systems. This then yields for periodic and almost periodic

systems a whole chain of theorems on stability and instability

quite similar to that for autonomous systems. For example, one has

+

COROLLARY 4. Let Q_ = [ x; V(t,x) < _, all t in [0,T] ] , and

+ Let G be the component of
let G+ be a component of Q_ .

Q_ = [ x; V(t,x) < _ for some t in [O,T] ] containing G+ . If G

is bounded_ V _ 0 for all t and all x in G _ and if M° =

M O G C G+, then M ° is an attractor and G+ is in its region of

attraction. If V(t,x)= _(t) for all t and all x on the

boundary of M ° _ then M ° is a stable attractor.

Our last example of an invariance principle for ordinary
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differential equations is that due to Yoshizawa in [i] for "asymp-

totically autonomous" systems. It is a consequence of Theorem i

and results by Markus and Opial (see [i] for references) on the

limit sets of such systems. A system of the form

= F(x) + g(t,x) + h(t,x) (5)

is said to be asymptotically autonomous if (i) g(t,x) _ 0 as

t -_ _ uniformly for x in an arbitrary compact set of Rn ,

(ii) f lh(t,_(t))l dt < _ for all _ bounded and continuous
O

on [O,_) to R n . The combined results of Markus and Opial then

state that the positive limit sets of solutions of (5) are in-

variant sets of _ = F(x) . Using this_ Yoshizawa then improved

Theorem 1 for asymptotically autonomous systems.

It turns out to be useful, as we shall illustrate in a

moment on the simplest possible example, in studying systems (i)

which are not necessarily asymptotically autonomous to state the

theorem in the following manner:

THEOREM 4. If, in addition to the conditions of Theorem i_ it is

known that a solution x(t) of (1) remains in G for t > 0

and is also a solution of an asymptotically autonomous system (5)_

then x(t) approaches M* = M U [_] as t _ _ , where M is the

largest invariant set of _ = F(x) in E .

It can happen that the system (i) is itself asymptotically

autonomous in which case the above theorem can be applied. However 3

I
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as the following example illustrates_ the original system may not

itself be asymptotically autonomous but it still may be possible

to construct for each solution of (i) an asymptotically autonomous

system (9) which it also satisfies.

Consider again the example

_: y (6)
i_ = -x - p(t)y , 0 < 5 _- p(t) -<- m

for all t > 0

Now we have the additional assumption that p(t) is bounded from

above. Let (_(t)_ _(t)) be any solution of (6). As was argued

previously below Theorem l, all solutions are bounded and _(t) _ 0

as t _ . Now (E(t), _(t)) satisfies ± = y , y =

-x - p(t)_(t)_ and this system is asymptotically autonomous to

(*) _ = y , _ = -x . With the same Liapunov function as before,

E is the x-axis and the largest invariant set of (*) in E is the

origin. Thus for (6) the origin is asymptotically stable in the

large.

3. Autonomous functional differential equation.

Difference differential equations of the form

i(t) = f(t,x(t),x(t-r)) , r > 0 (7)

have been studied almost as long as ordinary differential equations

and these as well as other types of systems are of the general form

i(t) = f(t,xt) (8)
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where x is in Rn and x t is the function defined on [-r,O]

by xt(_ ) = x(t+_), -r _ • _ 0. Thus x t is the function that

describes the past history of the system on the interval [t-r_t]

and in order to consider it as an element in the space C of

continuous functions all defined on the same interval [-r_0]_ xt

is taken to be the function whose graph is the translation of the

graph of x on the interval [t-r,t] to the interval [-r,0] .

Since such equations have had a long history it seems surprising

that it is only within the last i0 years or so that the geometric

theory of ordinary differential equations has been successfully

carried over to functional differential equations. Krasovskii [8]

has demonstrated the effectiveness of a geometric approach in ex-

tending the classical Liapunov theory_ including the converse

theorems_ to functional differential equations. An account of other

aspects of their theory which have yielded to this geometric approach

can be found in the paper [9] by Hale. What we wish to do here is

to present Hale's extension in [2] of the results of Section 2 of

this paper to autonomous functional differential equations

: f(x t) • (9)

It is this extension that has had so far the greatest success in

studying stability properties of the solutions of systems (9)_ and

it is possible that this may lead to a similar theory for special

classes of systems defined by partial differential equations.

With r _ 0 the space C is the space of continuous

!
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functions _ on [-r,0] to Rn with II_II=

max [I_(T)I; -r _ • _ 0]. Convergence in C is uniform conver-

gence on [-r,0]. A function x defined on [-r,_) to Rn is

said to be a solution of (9) satisfying the initial condition

at time t = 0 if there is an a > 0 such that ±(t) = f(xt)

for all t in [0, a) and x = _ . Remember x = _ means
O O

x(_) = _(_), -r _ • _ 0. At t = 0, _ is the right hand deriv-

ative. The existence uniqueness theorems are quite similar to

those for ordinary differential equations. If f is locally

Lipschitzian on C_ then for each _ in C there is one and only

one solution of (9) and the solution depends continuously on

The solution can also be extended in C for t > 0 as long as it

remains bounded. As in Section 2_ we will always speak as though

solutions are defined on [-r,_). The space C is now the state

space of (9) and through each point _ of C there is the motion

or flow x t starting at _ defined by the solution x(t) of (9)

satisfying at time t = 0 the initial condition _; xt_ 0 _ t <_

is a curve in C which starts at time t = 0 at _. In analogy

to Section 2 with C replacing Rn, x t replacing x(t)_ and

llxtN replacing Ix(t) l, we define the distance d(xt,E ) of x t

from a closed set E of C to be d(xt,E ) = rain [llxt-@ll; _ e E].

The positive limit set of xt is then defined in a manner completely

analogous to Section 2. Because there are some important differences

we shall be satisfied here with restricting ourselves to motions
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xt bounded for t > O. One of the differences here is that in

C closed and bounded sets are not always compact. Another is that

although we have uniqueness of solutions in the future two motions

starting from different initial conditions can come together in

finite time t > O; after this they coincide for t _ t (The
O - O "

motions define semi-groups and not necessarily groups.)

Hale in [2] has, however, shown that the positive limit

sets _ of bounded motions xt are nonempty, compact, connected,

invariant sets in C . Invariance here is in the sense that, if

xt is a motion starting at a point of _, then there is an exten-

sion onto (-_,-r] such that x(t) is a solution of (9) for all

t in (-_,_) and xt remains in _ for all t . With this

result he is then able to obtain a result which is similar to

Corollary 1 of Section 2.

For _ _ C let xt(_) denote the motion defined by (9)

a continuous function on C to R definestarting at _ . For V

a_d Q_ by

and

_(_)= lira 1¥ [v(x (_))-v(_)]. (IO)
_-*0+

THEOREM 5. If V does not change sign on G for (9) and x t is

a trajectory of (9) which remains in G and is bounded for t > 0,

then xt _M as t _ .
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Hale has also given the following more useful version

of this result.

COROLLARY5. Define Q_= [_; V(q_)_ _] and let G be Q_ or

a componentof Q_ . Assumethat V is nonpositive on

G for (9) and that either (i) G is bounded or (iii) I_(0)I is

bounded for _ in G Then each trajectory starting in G

approaches M as t -_ .
%f

The following is an extension of Cetaev's instability

theorem. This is a somewhat simplified version of Hale's Theorem 4

in [2], which should have stated "V(_) > O on U when _ _ O

and V(O) = 0" and at the end "... intersect the boundary of

C ...". This is clear from his proof and is necessary since he
Y

%-

wanted to generalize the usual statment of Cetaev's theorem to in-

clude the possibility that the equilibrium point be inside U as

well as on its boundary.

COROLLARY 6. Let p e C be an equilibrium point of (9) contained

in the closure of an open set U and let N be a neighborhood of

p . Assume that (i) V is nonnegative on G = U N N,

(ii) M N G is either the empty set or p, (iii) V(qg) > _ on G

when q_ _ p, and (iv) V(p) = _ and V(q_) = _ on that part of

the boundary of G inside N. Then p is unstable. In fact, if

N is a bounded neighborhood of p properly contained in N then
O

= other than p
each trajectory starting at a point of Go G N N o

leaves N in finite time.
O

!
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Proof. By the conditions of the corollary and Theorem 5 each

trajectory starting inside G at a point other than p must
O

either leave Go_ approach its boundary or approach p .

Conditions (i) and (iv) imply that it cannot reach or approach that

part of the boundary of G O inside N o nor can it approach p

as t -_ . Now (ii) states that there are no points of M on

that part of the boundary of N inside G . Hence each such
O

trajectory must leave N in finite time. Since p is either in
O

the interior or on the boundary of G_ each neighborhood of p

contains such trajectories_ and p is therefore unstable.

In [2] it was shown that the equilibrium point _ = 0 of

was unstable if

_(t) : ax3(t)+ bx3(t-r)

a>O andIbl<lal. Using the same Liapunov

function and Theorem 6 we can show a bit more. With

4 o
v@)= _ (o)+½f 6(e)de,

4a -r

t

x4(__A)+ ½ f x6(e)de
V(xt) =-- 4a t-r

and

V(_) = -½(_6(0) + 2 -b _3(O)q_3(-r) + q_6(-r))
a

which is nonpositive when Ibl < l al (negative definite with re-

spect to $(0) and _(-r)) ; that is, V is a Liapunov function

on C and E = [_; _(0) = _(-r) = O} . Therefore M is simply

the null function $ = 0 . If a > O, the region G = {$; V(q_) < O}

I



5-18

is nonempty_ and no trajectory starting in G can have $ = 0 as

a positive limit point nor can it leave G . Hence by Theorem 5

each trajectory starting in G must be unbounded. Since $ = 0

is a boundary point of

[2] that if a < 0 and

stable in the large.

G, it is unstabte. It is also easily seen

Ibl < lal, then 9 = 0 is asymptotically

In [2] Hale has also extended this theory for systems

with infinite lag (r = _); and in that same paper gives a number

of significant examples of the applications of this theory.
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Extended Dynamical Systems and Stability Theory

The term dynamical system, as used in this note, is used to

describe a one-parameter family of operators with certain properties

defined in an appropriate space and is a natural generalization of

differential equations, functional differential equations and cer-

tain partial differential equations. Zubov ! has shown that the

stability theorems of Liapunov as well as their converses are ap-

plicable to dynamical systems. These results play an important role

in theoretical studies of stability but, unfortunately, are not easy

to apply to particular problems.

For ordinary differential equations and functional differ-

ential equations LaSalle 2 and Hale 3 have shown that the limiting

sets of trajectories which lie in a compact subset of the space are

contained in the largest invariant set where the derivative of the

Liapunov function V vanishes. The purpose of the present paper is

to extend this result and other related stability results to dynam-

ical systems. In this manner the invariance principle and the sta-

bility theorems obtained are also applicable to a large class of

partial differential equations. The natural setting for the study

of dynamical systems is a Banach space, which can be considered as

the space of continuous functions over a finite interval in the

case of functional differential equations, as the Euclidean space

in the case of differential equations, and as a Sobolev space for

certain hyperbolic partial differential equations.
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Let R+ denote the interval [0,_)

space with I1_11 the norm of an element q_

and _i a Banach

of this space.

Definition i. We say u is a dynamical system on a Banach

space _ if u is a continuous mapping of R+ X _ into _,

u(t,_) is uniformly continuous in t for t,_ in bounded sets_

u(O,_) = _ and u(t+_,_) = u(t,u(_,_)) for all t,v __ O, _ in

through q_ in _ is defined as

is an equilibri_ point if 0+(_) =

. The positive orbit 0+($)

0+@) : U u(t,_),we say
t__O

: _).

Zubov I has discussed systems of this type_ without the uniform

continuity condition on bounded sets_ and referred to them as general-

ized dynamical systems. In the theory of dynamical systems on n-dimen-

sional vector spaces the concept of invariant sets is basic since the

limits of orbits are invariant sets. Zubov defines an invariant set

of his generalized dynamical system as a set M such that_ for any

in M, 0+(_) belongs to M. Since u is defined only on R +

this appears at first sight to be a reasonable definition; however_

this definition does not impart any special significance to the limit

set of an orbit and appears unreasonable since it generally occurs

that trajectories having limits can be used to define functions on

(-_,_). We shall therefore modify the definition of invariant set.

If u is a dynamical system on _, then one can be

assured that 0+(_) has a nonempty limit set if 0+(_) belongs to

a compact subset of _. In ordinary differential equations and

!



6-4

functional differential equations it is possible to show that 0+(_)

belonging to a bounded set implies 0+(_) belongs to a compact set

(see, for example ref. 3 ) and thus the limit set is nonempty. How-

ever_ for many partial differential equations_ this is not the case.

On th othcr hand, for certain partial differential _quations bounded

orbits in,_ will belong to s compact set of a larger Banach space _ .

It is this latter property which we wish to exploit in de-

tail. More specifically_ if we know that every bounded orbit in

belongs to a compact set in _, then we can discuss the

limit of the orbit in _(thus extending the dynamical system) and

as a consequence hope to obtain more specific information about

trajectories than would be possible by remaining only in _.

These remarks provide the motivation for the following discussion.

The reader should contrast this approach with the one of Auslander and

Seibert 4 in which it is assumed that the spacs _ is locally compact.

Let _ ,_ be Banach spaces, _ C_ and let there

exist a constant K > 0 such that II_II_ _ KII_II_.

Definition 2. Let u be a dynamical system on _. Let

_* be the set of _ in _ such that there is a sequence _n in

and a function u*(t,_) in _ for t in R+, such that

II_n-_llj_ _ O, llu(t,_n)-U*(t,_)l_ _ O as n _ _ uniformly on

. + _* _*compact subsets of R+. We refer to the function u : R × --_

as the extension of the dynamical system u to _* or simply as

the extended dynamical system.

The function u* is clearly an extension of u. In fact_

if _ is in _, then there exists a sequence _n in _ such

I
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that II_n-_ll 50 (and therefore Ilmn-ml_50) as n 5_. This

fact and the continuity of u implies llu(t,_n)-uCt,_)ll__ o as

n 5® and therefore llu(t,$n)-U(t,qD)ll_50 as n-_. Thus

u*(t,q_) = u(t,q_) for qo in _ . Furthermore it is easy to prove

¢@

Lemma i. The function u (t,$) is continuous in t and

u*(O,$) = q_, u*(t+x,_) = u*(t,u*(x,$)) for t,T in R+ and q0

in _*.

We now give a definition of invariance of a different nature

from the one given by Zubov:

Definition 3: A set M in _* is an invariant set of

the d_namical system if for each q_ in M there is a function

U(t,$) defined and in M for t in (-_) such that, for any

a in (-_,_), u*(t_U(a, qD)) = U(t+_,qD) for all t in R+.

Definition 4: For any $ in _, the _-limit set _($)

of the orbit through $ is the set of @ in _ such that there

is a nondecreasing sequence [tn], t > O, t _ as n _ suchn n

that llu(tn,_)-_ll_ 50 as n_.

It should be noted that sets are invariant according to the

above definition relative to the interval (-_,_) and that the

_-limit set of an orbit is obtained relative to convergence in_

and not in _. With these definitions it is then possible to

prove the fundamental

i
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Lemma 2; Let q0 in _ be such that 0+(q0) belongs to a

bounded set of _ and a compact subset of _. Then the e-limit

set 2(_) of the orbit through _ is a nonempty, compact, connected

set in Q_*_ invariant with respect to the extended dynamical

system and
dist_ (u(t,qD),Q(qD)) -_0 as t-_.

Proof: Since 0+(q_) belongs to a compact subset of ___,

it is clear that _(_) is nonempty and belongs to a compact subset

of _-_ . We shall show below that it belongs to _*. Suppose

0 3that $ in _(_) is given and that [tn] , nondecreasing, tn-

II tn,_ II _0 as n _. For at n _ _ as n _ _ satisfies u( )-_

given T in [0,_) there exists an no(T ) such that tn - T _ 0

for n _ n (T) and it is therefore meaningful to consider the se-
o

quence u(t+tn,_) ; n _ no(T), t in [-T,T]. By hypothesis there

exists an M such that llu(t,_)II_ _ M for all t in [0,_).

Thus II( II KM for n _ n (T), t in [-T,T]. Also, since..u t,_)..__ o

u(t,_) is uniformly continuous in t for t,_ in bounded sets,

for any c > 0 there exists a 5 > 0 such that

llu(t+S+tn, q0)-u(t+tn, q0)N_ -<_Kllu(s,u(t+tn, qD))-u(0, u(t+tn, q0))ll_ _-

for n _ no(T), 0 _ s _ 5. This proves that the sequence

[u(t+tn,_)], t in [-T,T] is uniformly bounded and equicontinuous

in _ . Since this sequence belongs by hypothesis to a compact

subset of _ Ascoli's theorem implies the existence of a sub-
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sequence which we again label by tn such that it converges uni-

formly on [-T,T]; that is_ there exists a function U(t,_0)

continuous in t such that lim llU(t,_)-u(t+tn,_)ll =0 uniformly
n--_@

on [-_,T]. Obviously _0,_) = 4. Letting now T = 1,2,...

successively and using the familiar triangularization procedure we

determine a subsequence which is relabled by tn and a continuous

function U(t,@) defined for t in (-_=) such that

lim llU(t,q0)-u(t+tn,_)I_ = 0 uniformly on compact subsets of
n--_

(-_, _). Applying this in particular to [0,_) we obtain that

belongs to (_*. Furthermore, it is clear that U(t,$) is in _($).

Let now a be an arbitrary real number in (-_,_). We

I claim that U(t+_,_) = u*(t,U(a, q0)), t __ 0. For this particular

We have lim llu(a+tn,_)-U(_,_)l _ = 0 and lira IIu(t,u(_+tn,_) ) -
n-_ n-_

- U(t+a,$)ll_ = 0 uniformly on compact subsets of [0,_). But

this is precisely the manner in which u (t,U(_,_)) was defined.

I

I
I

I

I

This shows that G($) is invariant with respect to the extended

dynamical system. It is clear that _(_) is connected.

We now show that G(_) is closed. Let @n in G(_) be

such that _n _ @ as n _ _. Then for any c-neighborhood of

in _ there exists a t ,t_ -_ as c-_0 such that Ilu(tc,_0) -

- _I_< _- Hence closure.

Finally_ assume there exists a sequence [tn} _ nondecreas-

ing, tn _ _ as n _ and an G > 0 such that IIU(tn,q_)-_lld_ 2_

I

I
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for all _ in n(_). By assumption [U(tn,_) ] belongs to a com-

pact set of _ and therefore there exists a subsequence which

converges to _ in _. But then _ belongs to 2(_) by defini-

tion, contradicting the assumption and the proof is complete.

We now define the concepts of stability with respect to

these spaces:

Definition 5: If zero is an equilibrium point, then we

say that zero is stable if for every c > 0 there exists a 8 > 0

such that II_II_ < 5 implies llu(t,_)II_< c for all t _ O. If,

in addition, there exists a b > 0 such that II_II_ < b implies

llu(t,_)Ir_* o as t* _ thentheoriginissaidtobeasymptotically

stable (_,_,). The origin is called unstable if it is not stable.

It is remarked that asymptotic stability is defined by taking

limits in _,

sets.

If V

we define

as is to be expected from the definition of _-limit

is a continuous scalar functional defined on _,

V(_) = i-_ l[v(u(t,q_))-V(q_)].

t__o +

Following LaSalle 5 we give
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Definition 6; We say a scalar functional V is a Liapunov

functional on a set G in _ if V is continuous and bounded be-

bounded sets of

low on/G and _(_0)-_< 0 for @ in Go We define sets R,M as

follows :

R : [£0 in _ :there exists {_n] in G with lira ll_n-_lI = 0
n_

and lira _(_pn) = 0},
n-_

and M is the largest set in R which is invariant with respect to

the extended dynamical system.

With the above definitions and with the fundamental Lemma 2

it is now possible to prove stability theorems which are direct

generalizations of those given for functional differential equations

and differential equations 3'4.

Theorem i" Suppose every orbit 0+($) which is in a

bounded set in _ also belongs to a compact set in _. If V

is a Liapunov functional on G and an orbit 0+(_) belongs to G

and is in a bounded set in _, then u(t,_) -_ M in _ as

t _ _.

Corollary i: Suppose that every orbit which belongs to a

bounded set in _ also belongs to a compact set in _ . Assume

V is a continuous scalar functional defined on _, S = [_ in _:
P

V(_) < p] and let G be S or a component of S . If V is a
P P

Liapunov functional on G and any orbit remaining in G belongs to
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a bounded set in _, then _ in G implies u(t,_)_M in

as t _.

Note, in this corollary, that if zero is in G and M con-

sists of only the point zero, then the origin is an "attractor" but

we have not shownit to be stable. The following result gives

conditions that insure stability. The part of the corollary which

does not follow directly from Theoremi is proved as in the usual

Liapunov theory.

and

zero is stable. If, in addition, M = [0],

cally stable (_, _). If, in addition,

then zero is asymptotically stable (_,_).

Corollary 2: If the conditions of Corollary i are satisfied

V is a continuous positive definite functional on G, then

then zero is asymptoti-

is negative definite,

The stronger form of asymptotic stability given in the last

part of this corollary ahould be noted. Unfortunately, for any given

system it is very difficult to construct a Liapunov functional with

these characteristics.

Theorem 2_

set in _ also belongs to a compact set in _ . Let zero

equilibrium point contained in the closure of an open set U

let N be a neighborhood of zero. Assume that

(i) V is a Liapunov functional on G = U n N_

(ii) M N G is either the empty set or is zero,

Suppose that every orbit which is in a bounded

be an

and
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(iii) V(_) < q on G when _ # 0

(iv) V(O) = q and V(_) = q when _ is in that part of

the boundary of G inside N.

Then zero is unstable.
O

More precisely, if N

borhood of zero properly contained in N, then _ # 0

= G R N implies that there exists a • > 0 such that
O

•is a bounded neigh-

in G =
O

u(%_) be-

longs to the boundary of N o.

The proofs of these theorems and corollaries follow closely

those previously given for ordinary differential equation sl.

The lemmas and theorems displayed above are in terms of

two spaces, _ and _. If the space _ is a Hilbert space

then a considerable simplification occurs.

Lemma 3: If _ is a Hilbert space and _ is a Banach space, _ C _

KII_II for some constant K>O,then the unit ball in

is closed in _ .

T!is lemma is a direct consequence of the Banach-Saks Theorem.

It follows that if _ and _ are Hilbert spaces,

then the set _* in Definition 2 is the same as _ and there-

fore the extended dynamical system is the same as the original

dynamical system. Therefor% the _-limit sets will belong to

but the convergence of u(t,_) to its _-limit set is in the sense

of the topology of _ and not, in general in _. These remarks

play an important role in the applications to certain partial differ-

ential equations.

I
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Stability Criteria for n-th Order, Homogeneous

%
Linear Differential Equations

E. P. Infante %T

Center For Dynamical Systems, Brown University

i. Introduction

This note is concerned with the homogeneous differential equation

x (n) * Pl(t)x(n-l) + ... + Pn_l(t)_ . pn(t)x = 0, (1.1)

where the _i(t) are real continuous functions. It ks desired to determine

appropriate criteria for the stability of the origin, criteria dependent on

the behavior of the functions Pi(t) but not of their derivatives.

This problem has been previously studied by Starzinski [1,2,3] for

particular forms of this equation up to the fourth order, and by Razumichin

[w] for the general matrix equation _ = A(t)x. The approach of these

authors has been to use the direct method of Liapunov, using a constant quad-

ratic Liapunov function V(x) = x'B× which is generated by determining the

n(n÷l)/2 constant elemeDts of the symmetric matrix B. The determination

of all these elements requires very heavy algebraic computations, computa-

tions which are completely unreasonable for n • 2. Recently, Ghizzetti

[5,6] has obtained simple stability criteria for (1.1) by using some appro-

priate majoration formulae for all the integrals of this equation. The

.4-
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particularly attractive aspect of these criteria is that they depend on only

n constant parameters which locate a family of hyperellipsoids in the n-

dimensional space of the Pi(t). If the curve parametrically represented

by the Pi(t) is entirely contained within one of these hyperellipsoids,

then (i.i) is asymptotically stable.

In §2 of this note the second method of Liapunov is used to ob-

tain stability criteria for (i.i) that depend on only n parameters which

determine a family of elliptic paraboloids in the n-dimensional space pi(t).

It can be shown that these elliptic paraboloids completely contain the hyper-

ellipsoids of Ghizzetti. In §3 a practical technique for the application of

the stability critePia obtained is discussed and is applied in the last sec-

tionto two examples. The stability conditions pPesented in this note ape

not necessary. Indeed, they are probably not the best possible conditions

obtainable fPom a quadratic Liapunov function• The technique presented in

this note was devised with paPticular emphasis on ease of computability of

some simple criteria.

2. Stability CritePia

Consider Eq. (i.i) Pewritten in state-space cooPdinates as

Xl = x2

x2 = x3

Xn_ 1 = X n

Xn = -Pn(t)xl - •.. -Pl(t)x n.

(2.z)

I
I

I
I
l

I
I

I
I

I
!
I

I
!

I
I

I
i
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For the detez_nination of the stability of the oriKin of (2.3),

consider the Liapunov function V(x) = x'Bx, B' = B = (Sij), _ij = constant.

Let b denote the n-th column of the matrix B, and
n

I b u

n

bn -- 6ni

b £
n

(2.5)

The derivative V of the Liapunov function V in terms of (2.3) is given

by

= x'(A'B + BA)x - x'(U'(t)B + BU(t))x, (2.6)

or

-V = x'Cx + x'(ub' + b u')x,
n n

(2.7)

where A'B + BA =-C. If it were possible to determine a matrix B, positive

definite, such that -V is positive definite for all t _ 0, then asymptotic

stability of the origin of (2.1) will have been determined by the well known

theorem of Liapunov [8]. For this purpose, consider the following simple

lemma:

Lemma 2.1: Given the constant matrix A,

any constant positive semidefinite diagonal matrix

A'B ÷ BA = -C has a unique solution B, an___d B

defined by (2.4), fo___rr

C _ 0 th_.__eequation

is positive definite.
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I
It is assumed that the Pi(t), real continuous functions of time, satisfy

the Routh-Hurwitz inequalities [7]• Let the n real numbers _i' assumed

to satisfy the Routh-Hurwitz inequalities, be associated to (2•1), which is

rewritten as

I

I

I

Xl = x2 I

• (2.2)

• I
Xn = -(Pn (t) - en)Xl - "'" -(Pl (t) - Sl)Xn - SnXl - "'" - alXn"

For economy of notation, (2.2) is rewritten as

I

I
: Ax - U(t)x, (2.3)

I
where I

A -

0 1 0 . . 0 0

0 0 1 . . 0 0

• • • • • • •

• • • • • • •

0 0 0 . . 0 1

-a " ' "_2-_1n -en-i -an-2

0

u(t) =i

/u'

U --

11n

nn_ 1

nI

u
u

nn+l-i

£
u

I

1

i

(2.4)

I

I

I

I

I

and where ni - Pi (t) - si"
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Proof. The matrix B, obviously symmetric, is unique since all the eigen-

values of A have negative real parts. Now, let V(x ) = x_Bxo< 0 foro

some x ° _ O, and define 6o as the trajectory of _ = Ax issuing from

Xo at t = 0. Along 6 we then have V(x) s V(x O) < 0. But 6 approaches

the origin and V(O) = 0. Hence V(x) Z 0. Similamly, let V(x I) = O,

x I _ 0, and 61 the trajectory emanating f_om x I at to.

trajectory approaches the origin, it must lie on the manifold

Since this

x'Cx = 0.

But this is clearly impossible with C diagonal and A in the form (2._).

Hence B is positive definite.

Hence, let the matrix B be generated by the diagonal matrix

C --

C u

0

C _

, (2.8)

whePe C u and C £ are constant nonsingular positive definite diagonal

square matrices, and where the zero element in the diagonal is located in _h4

i,i position. On the basis of the above lemma V(x) = x'Bx will be posi-

tive definite. In this case, Eq. (2.7) then becomes

Cu

o

C£

x -i-

• w £w

uUbU'+ bUuU' uUSni÷nn+l ib_ uUb£'÷ b u u 1n n - n n

u' u' _' £,i

x' nn+l-ibne 8niU Inn÷l-ibn+Sni u 28ninn÷l_ i

!

u£bU'+n b£uu'n U£Sni+nnel_ib_ u£b£'+n b£u£'n II

x

(2.9)

I
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Assume Sni • 0 (it is always possible to find a Bni • O,

and consider the regular transformation x = Sy,

namely )
nn

S -

I 0 o \

bu' b _'
n n

i
gni gni

O' 0 I

(2.1o)

where the unit element is in the i,i position and the I are unit matrices

of appropriate dimensions. If this transformation is applied to Eq. (2.9),

one obtains

C u

C_

.U U

0 Sni u -nn+l_ibn 0

U t U v

.u 8hi u£' £'Y ÷ Y' 8nl -nn+l-ibn 28ninn+l-i -nn+l-ibn

£ b £.u -n 0O' _nl n+l-i n

(2.11) "

or

u !

8ni u

Cu _niuU-nn+l_ib_ 0

' £' Z'
- bu 28ni 8 .u -nn÷l-i n _n+l-i nx nn+l-ibn

£

O' _ni u -nn+l_ib_ C£ j

Y

(2.12)

Y

I
I
I

I
I
I

I

I
I
I
I

I
I
I

I
I
I

I
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It now becomes necessary to determine under what conditions (2.12)

is positive definite. For this purpose, consider the second transformation.

y = Tz,

T -

-i

I -Cu vu

O' 1

£-i
O' -C .v

0/O'

I

, (2.13)

where the unit element is in the i,i position,the I are unit matrices

of appropriate dimensions and u u u v £ = 8ni u £v = 8ni u - nn+l_ibn , - nn+l_ibn .

This zransfomma_ion L$ obviously regulaP and when applied _o Eq. (2.12) yields

Cu o

O' '_

O' 0

0

O' z (2.14)

where

I 2 Bninn+l_i (Bni uu nn+l-ibn _)' cu-l( 8ni uu nn+l-i n )= - . _ bu +

| " _
u L nn, l_ibn_)'C _ i(8 .u- (Sni - n_ - nn+l-ibn )

I

(2.15)

I

I

Ii

Since (2.14) is diagonal, it can then be concluded that V will be negative

definite if m £ 6 • O.

On the basis of what has been said above, it is then possible to

state:

Theorem 2.1: Given the homogeneous differential equation

I
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x (n) + Pl(t)x(n-l) ÷ ... + Pn_l(t)_ + Pn(t)x : 0 , (2.16)

with Pi(t) rea_____lcontinuous functions for t £ 0, associate with this

. satisfying the Routh-Hurwitzequation the n real cohstants al, ..,an

inequalities, and define _i = Pi (t) - e'" Let the matrix B = (8ij) be

th____esolution o__f the matrix equation

A'B ÷ BA = -

Cu

0

C £

, (2.17)

where C u C £
, are constant, positive definite dia_onal matrices, and the

zero element in the dia$onal appears in the i,i position; and where

A "

0 i 0 • . 0 0

0 0 i . . 0 0

• • • • . • .

0 0 0 . . 0 1

-_ " ' -_2 -aln -_n-1 -_n-2

(2.18)

Let b denote the n-th column of B and define
n

b --

n

b u
n

8ni

b £
rl

U =

nn+l-ll

nn+l-i

n I

u
u

Nn+l-i

u £

(2.19)

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
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Then, if for any 6 > 0 an___dany i : I,... ,n

-i

28ninn÷l_i ( Bni uu b u u u u- _ nn+l_ i n )'Cu (8ni - nn,l_ibn ) +

£ n£ ,C £-I £- (Snl.U - qn+l_i b ) (Snl.U - nn+l_ibn &) _> 6

(2.20)

for all t £ 0, the null solution of (2.16) is asymptotically stable•

This theorem is not as general as it would have been possible

to state, yet it is still too general for practical applications because

of the generality of the matrices Cu and C £. Before restricting the

theorem, it is desirable to make some remarks concerning the results so

far obtained•

First of all we wish to point out that Eq. (2.20) represents,

in the parameter space of the n's, an elliptic paraboloid. This can be

easily seen by introducing the transformation of coordinates for the para-

meter space given by

V ----

Yn,l-i

Yn+l-i

o

Y1

/
u

v

Yn+l-i

v

Bni I -b u 0n

O' 1 O'

0' -b £ 8 .I
n nl

, u ui'

I nn+l-i
£

u

(2.21)

This transformation is obviously regular if 8n i • O, which as was pre-

viously pointed out, is no restriction. In the new coordinates, Eq. (2.20)

becomes

I
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26niYn÷l_i - v'

-1

Cu

v > _ . (2.22)

This is evidently the equation of an elliptic paraboloid. If 6hi > 0, as

assumed, the domain defined in the parameter space by (2.22), hance by (2.20).

is nonempty.

Secondly, it is evident that, for any

the conditions of Theorem 2.1, the domain of the

Cu and C £ satisfying

n parameter space defined

by any of the (2.20) is strictly contained within the domain where the #i(t)

satisfy the Routh-Hurwitz inequalities. On the other hand, it is easily shown

that every point of the domain of the parameter space where the Oi(t) satis-

fy the Routh-Hurwitz inequalities is contained in at least one of the domains

defined by (2.20). To prove this, let pi(t) = @i = constants. Since the

#i satisfy the Routh-Hurwitz inequalities, it is possible to select the n

numbers ei' themselves satisfying these inequalities, and such that

qn+l-j = P--n+l-j - _n÷l-j = 6 > 0 for some j and On+l-i -_n+l-i = 0 for

all i _ j. Under these conditions Eq. (2.20) reduces to

.u,^u-lbu b£ , £-i £
26njqn+l_j-nn+l_jOn u nnn+l-j - nn+l-j n C bnnn+l_ j >_ 6. (2.23)

But for any ¢ > 0 sufficiently small, a 6 > 0 can be found such that (2.23)

is satisfied. Hence the remark.

Finally, it is noted that the continuity condition imposed by

Theorem 2.1 on the p.(t) imply that Eq. (2.16) does not have a finite
l

I

I
I
I
I

I
I

I
I

I

I
I
I

I

I
I
!
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escape time. It is therefore possible on the basis of this remark and

the two previous ones to state:

Corollary 2.1: Given the differential equation (2.16) with

Pi(t) real continuous functions for t Z 0, if there exist a T > 0 such

that for all t £ • (2.20) is satisfied for some 6 > 0 and some i = l,...,n,

then the null solution of (2.16) is asymptotically stable.

Corollary 2.2: If, in Eq. (2.16), __the Pi(t) are real continuous

functions for t Z 0 and lim Pi(t) = Pi ' where the Pi satisfy the

Routh-Hurwitz inequalities, then the null solution of (2.16) is asymptotically

stable.

This last corollary is very well known [7], and can be traced

directly to Liapunov.

3. Application of Stability Criteria

The positive definite diagonal matrices Cu and C£ have not

been so far specified. The first step in the application of the stability

criteria obtained to a specific example is the selection of these two mat-

rices, from which the matrix B is obtained as the solution of the equation

A'B ÷ BA = -C. Algorithms for the solution of this matrix equation are

available. A particularly simple one has been recently given by Smith [9]

in the case matrix A has the form (2.18).

It is particularly convenient, to obtain algebraically simple forms

for B, to select the matrices Cu and C£ to be composed of linear com-

binations of matrices of the form

C1 = 2 diag (_, 0,...,0) (3.1)

I
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and

where

: _--o ..,o) k _ lCk 2 diag (0,..., a , ,. , ,
n

is the Hurwitz determinant [7] of the a:

(3.2)

al _3 _5

1 _2 e4

0 _i _3

0 1 e2

0 0

• _2n-i

• e2n-2

• _2n-3

• _2n-4

•
n

(3.3)

where A is given by (2.18)The matrix equation A'B k + BkA = -Ck,

can be rapidly solved for Bk when Ck is of the suggested form. The

matrices obtained in this manner for n = 2,3 are shown in Table i.

Ingwerson [i0] previously published these matrices for n = 2,3,4. If

Cu and C£ are obtained, as suggested, by linear combinations of the Ck,

then the matrix B will be the corresponding linear combination of the Bk.

|i

I
I
I

I
I

I
I

I
I
I

I
I

I
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I
I



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

n = 2

n = 3

B 1 =

B2 =

B3 =

2

el ÷ _2

B1 =

7-13

Table I

$

1

2 2

/ a22(ala2-a3)+ala3 ala2ala2-a3_3 2

I al_2 _l+a 3 a 1
2

\_ia2-_3 al al

ala3 a3 0

2

a3 Sl +a _i

01s3

a2

0 al 1

2

cL3 a2c_3

2

a2a 3 (Xla3+c_2

0 _3

C1 =

C2 =

, C1 =

C2 =

C 3 :

2ala 2 0

0 0

0 0

0 2al}

2a3 ( CXla2-a 3) 0 0

0 0 0

0 0 0

0 0 0

2(ala2-a 3 ) 0

0 0

0

2 (a.a^-a)
I z
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4. Two Examples

In this section, the stability criteria obtained is applied to

two simple but illustrative example problems.

As a first example, consider the second order equation

+ p_ _ q(t)x = 0 (4.1)

or

Xl = x2

x2 = -q(t)Xl - PX2

(4.2)

where, p > 0 is a constant and 0 <ql +_ _ q(t) _ q2- _' for _ > 0. It is

desired to determine conditions on ql' q2 and p that guarantee the

asymptotic stability of the null solution of (4.2). This same problem has

been treated by Ghizzetti [5], with whom we wish to compare our results.

In the case of a second order equation, inspection of the matrices

B 1 and B 2 of table one indicates that, for 6ni > 0 one must select i = 2.

With this choice one immediately obtains

C "

b

n

2alS 2 0

0 0

-1
1

, _cU = __------
2ala 2

n2

; u =

nI

(4.3)

I
I
I
I

I
I
I

I

I
I
I

I
I
I
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I
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upon which The s_ability equation given by (2.20) becomes

2(p- =i) - [(q- =2i - =l(p- =l)] i
2_i_ 2

[(q - s2 ) - _l(p - _i )] _ 6 >0

(4.4)

or, leTTing vI P v2 2 and z(t) q(t)2

P P

4VlV2(l - Vl ) - [z(t) - v2 - Vl (I - Vl )]2 >- c • 0 (4.5)

To determine the appropriate values of Vl and v2 for this

expression, let

ql

Zl = --2 = v2 + 91 (I - Vl) - 2 /VlV2(l - Vl )
P

q2

z2 = _ = v2 + Vl(l - vI) + 2 /VlV2(l - Vl )
P

(_.6)

and to maximize the difference between z2 and zI let vI = 1/2. Then

1
zI :_+ v2 -

i
z2 =_÷ V2 +

(4.7)

Solving now for v 2 from the first of these equations

1
v2 :[+ zI + z_1 (4.8)

is obtained. With these two particular values of vI and v2 (4.7) yields

I
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= 1
z2 zI + 2/_ + z I +

Hence, if 0 < z I + £ < z(t) < $ for some _ > O, an _ > 0

can be found such that Eq. (4.5) is satisfied. Therefore, Eq. (4.1) is

asymptotically stable if, for some _ > O,

0 < ql + _ -< q(t) _< q2 - _
(4.10)

and

q2 ql 2_ i ql +_
P P P

(4.11)

q(t)
2

P

ql/p 2 vs. q2/p 2, then Eq. (4.1) is asymptotically stable.

A obtained by Ghizzetti [5] is shown also.

As a second example, consider the differential equation

This result is represented in graphical form in Figure i: if

-- is strictly internal to the domain A of the parameter space

The domain

"_ + p_ + _ + r(t)x : 0 , (4.11)

where p > 0 is a constant and 0 < _ _ r(t) _ r 2 - _ for some _ > 0. It

is desired to determine conditions on r 2 to guarantee the asymptotic sta-

bility of the null solution of this equation. This equation has been

studied by Starzinski [3], who generated a constant Liapunov function by

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!



I
7-17

I

I

I

determining, Through a very laborious process, appropriate values for all

six elements of the 3 x 3 B matrix.

Inspection of the third order matrices of Table 1 indicates

that, for 8ni > 0 one must select either i = 2 or i = 3. Let i = 3

upon which the stability equation (2.20) becomes

I

I
I

I

-i

2833( p - e I ) - [633(r(t) - s3 ) - 831(P - Sl)]2C u +

(4.12)

_i)]2C £-I- [833(1 - _2 ) - 632(P - Z 6 > O.

#

Since i = 3, let C = C1 . lC2 where CI and C 2 are the two matrices

shown in Table l, and X • O. From Table 1, then

I _ = a 2
631 =_a2 _3' 632 + %el' 833 = I + el

1

I -i -I

Cu _ i C £ _ i

2a3(_la2-=3) ' 2_(_i_2-e3 )I

I

I

I

(4.13)

are immediately obtained. Equation (_.12) can be therefore rewritten as

]24e3(_ * el)(al=2-ss)(p - el) - [(l * _l)(r(t) - _3) - (_i_2-e3)( p - e l) +

a3- _-_(x + _l)(1 - _2) - (_ + _l)(p - _l)] 2 • ¢ • o.

(4.1_)

I The second quadratic term vanishes if

I
(i - e2 ) = el( p - =i ). (4.15)

I

I
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Furthermore, (4.14) can be satisfied as r(t) becomes very small only if

l

i +a I
(4.16)

P - al : a3 al_2 _ _3 "

Assuming these two conditions, Eq. (4.14) yields

0 < _ g r(t) < 4a 3 - _ , (4.17)

where _ _ 0 as _ ÷ O. Equations (4.15) and (4.16) yield

2
/p2 4 + 4_ 2_2 - _2 P + -

aI = ; (4.18)_3 : _ +p ' 2

therefore, let

= i - (p)2 if 0 < p _< /_
_2

1 L (4.19)
a2 : -- if _ < p2

upon which one obtains that Eq. (4.11) is asymptotically stable if

4

< r(t) < i (p2 +-._-)--- _ if 0 < p0 <

-_+p

(4.20)

0 < _ < r(t) < i _ if p > /_
- _ ÷p

for some _ > 0 and k > O, since the ='s obtained from Eq. (4.18) and

I

I
I
I
I

I
I

I
I

I
I

I
I
I

I

I
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(4.19) satisfy the Routh-Hurwitz inequalities.

This same result would have been obtained if the stability

Eq. (2.20) for i = 2 had been used. The stability conditions (4.20) are

identical to those obtained by Starzinski [3].
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ON THE STABILITY OF SOME LINEAR NONAUTONOMOUS SYSTEMS

E. F. Infante

The stability of systems described by differential equa-

tions with time varying coefficients has been the subject of numerous

mathematical studies_ see for example [i]; however very limited

sucess has been achieved from the practical viewpoint with the

exception of the case in which the coefficients are periodic.

Recently Kozin [2] 3 Caughey and Gray [3] and Ariaratnam [4] among

others have studied the stability of linear systems with stochastic

coefficients; in these studies the principal tools used have been

Gronwall's inequality and a norm used to reduce the vector dif-

ferential equation to a scalar equation. Kozin [2] used the so-

called taxicab norm 3 Caughey and Gray [3] used a very special quad-

ratic norm and obtained results superior to those of Kozin. A

natural problem within this context is to determine the optimum

norm_ among a certain class_ for a specific problem.

The stability theorems given in [2] and [3] depend on the

specific norms used in their proofs. The object of this paper is

to extend these theorems so that they are applicable for any quad-

ratic norm. This can be easily done through the use of well known

results on pencils of quadratic forms [5]3 an application which

seems to have been overlooked. The theorem obtained in this manner_

and two corollaries_ are then applied to the determination of con-
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8-3

ditions for the stability of second order equations, for which it

is possible to obtain the optimum quadratic norm. The stability

results obtained in this manner, which as expected represent sufficient

but not necessary conditions, constitute a considerable improve-

ment over those presented in [2] and [3],and are believed to be

new. The examples are limited to second order systems since problems

of this type are often reduced to them.

The notation used here follows that of [2] and [3], and

emphasizes the application to stochastic processes. Naturally,

the results are equally applicable to deterministic systems which

satisfy the condition of Equation (2).

A STABILITY THEOREM

Consider the differential equation

= [A + F(t)]x , (1)

where x is an n vector, A is a constant matrix and F(t) is

a matrix whose nonzero elements fij(t) are stochastic processes,

measurable, strictly stationary, and that they satisfy an ergodic

property ensuring the equality of time averages and ensemble averages.

If G is a measurable, integrable, function defined on fij(t)

then

I
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E{G(fij(t))] = E(G(fij(O))] :

t

1 fij(_)lim _ f G( )d_
t-_ o t

o

(2)

exists with probability one. For simplicity let, in (i), E[F(t)} = 0

and denote by kmax[Q] the largest eigenvalue of the matrix Q,

Q' the transpose of Q.

THEOREM: If, for some positive definite matrix B and some c > 0

E[kmax[A' + F'(t) + B(A÷F(t))B -I] <--m , (3)

then (1) is almost surely asymptotically stable in the large.

Proof: Consider the quadratic (Liapunov) function V(x) = x'Bx.

Then, along the trajectories of (1), define

_(t) = _--_,[(A÷F)'_ ÷ B(A+F)]_ . (_)
V(x) x' Bx

From the extremal properties of pencils of quadratic forms [5] the

inequality

kmin[(A+F)'+B(A+F)B'I] _- k(t) _-kmax[(A+F)'+B(A+F)B -I] (5)

is obtained, where kma x and kmin, being the maximum and minimum

eigenvalues of a pencil, are real. It follows from (4) and (5) that
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8-5

1 t

ft k(x) dX (t-to) [_--tr-ftok(_x) dx]
V(x(t)) = V(x(to))e to --V(x(to))e , (6)

from which it follows that, if E[k(t)} __ -¢ for some ¢ > O,

V(x(t)) is bounded and that V(x(t)) -_O as t -_. This is the

condition imposed by (3), which proves the result.

It is remarked that a necessary condition for (3) to

hold is that the eigenvalues of matrix A have negative real parts.

The eigenvalue computation specified by (3) is far simple. It is

possible to obtain a result which is easier to compute, but not as

sharp.

COROLLARY i: If, for some positive definite matrix B and some

_>O

E[kmax[F' (t)+BF(t)B-I]} __ -kmax[A' +BAB-I]-¢ , (7)

then (I) is almost surely asymptotically stable in the large.

Proof:

that

The proof follows immediately from the theorem by noting

I
I

I

k(t) _- kmax[ (A+F)' +B(A+F)B -I] _-%max[A' +BAB-I] +kmax[ F' +BFB-I], (8)

from which it follows upon the application of (7), that

I
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E[ k(t)] _-Xmax[A'+BAB-I]+E[%ax[F'(t)+BF(t)B-I]] _--e , (9)

the desired result.

It is obvious that unless the second inequality in (8)

is an equality the stability results obtained will not be as good

as those given by the theorem. For computational purposes, it is

desirable to further simplify the theorem. For this purpose let

(i) be written as

R

= Ax + _ fi(t)Ci , (lO)
i=l

2
where R _ n , and recall that E[fi(t)] = 0.

COROLLARY 2: If, for some positive definite matrix B and some

¢>0

R

½E[I fi (t)l ]( kmax[ C'i+BCiB-l]-kmin [C_+BCiB-I] )
i=l

__ _kmax[A' +BAB -1]-e ,

(ll)

then (l0) is almost surely asymptotically stable in the large.

Proof: In this case equation (4) of the theorem becomes

R x,(C[B+BCi)_
k(t) = x'(A'B+BA)x + 7. fi(t )

x'Bx i=l x' Bx

(_)
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Since E{fi(t )] = 0 by assumption, define the two functions

fl(t) I fi(t) if fi(t) -_ 0
0 if fi(t) _- 0

fl(t) = Ifi(t) if fi(t) _- 0 .
0 if f. (t) _2 0

i

(13)

It then follows that

+

E[fi(t)] = -E[ fll(t)] --½E{Ifi(t)l], (14)

and Equation (12) yields

R

E(k(t)] _- kmax[A +BAB -I] + Z ½E[I fi(t)l](kmax[Ci+BCiB-l]
i=l

-kmax[Ci+BCiB-l]) ,

(15)

from which, through application of condition (ii),

E[k(t)] _ -¢ (16)

is obtained, proving the corollary.

It is again to be expected that the results obtained from

this corollary will seldom be as good as those given by either the

Theorem or Corollary l, since the majorizations used are rougher
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than the previous ones.

The above theorem and corollaries say nothing regarding

how the matrix B should be chosen. If this matrix is chosen,

as in [3], as the solution of the matrix equation A'B+BA = -I

then the stability condition of the Theorem_ Equation (5)_ becomes

E[kmax[_B-l+F'(t)+BF(t)B-l]] __-e , (3')

Corollary 1 yields the stability condition

E[ kmax[ F, (t) +BF(t)B- i] ] <_ 1
%max[B] -6 , (7')

and the condition of Corollary 2 becomes

R

Z ½Elifi(t)l}(kmax[C_+BC'B-I]-kll mln"[C!+BCI iB-l])

i=l

< 1

_max[B]

(ii' )

The conditions implied by (7') and (ii') are clearly satisfied

if we majorize further in these equations by noting that, if

Q(t) = F'(t)+BF(t)B -I,

kmax[Q(t)] _- X IQijl ,
i,j

and further that
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½(½ax[C[+BCiB-l]-½in[C'+BC.B-1])<=l.il ,
l 1 msD(

where l_il max is the largest eigenvalue, in absolute value, of

C! + BC.B -1. With these majorizations equations (T') and (ll')
1 1

become

and

E[ 7. ]Qij]] ___ml[B'J_x- _ (7")
i,j

R • 1 .__.,.
[±I')

X E(lfi(t)lll_imax_ kmax[B ] ,i=i

the stability conditions given by Caughey and Gray [3].

It is then seen that the use of well known results on

pencils of quadratic forms yields stability theorems of time varying

systems that include those of [3]. The natural question at this

juncture is to demand a theorem which yields the optimal matrix B

to be used. Unfortunately, this problem does not appear amenable

to analysis, as the third example of the next section indicates.

The purpose of the following section is to obtain the optimal matrix

B of the Theorem and Corollaries 1 and 2 for the two most common

second order equations of type (1). A third second order equation

is analyzed to show that an optimal matrix B does not exist; finally

an application of the theorem of this section to the study of the

stability of a nuclear reactor is shown. The stability results

I
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thus obtained are compared with those given in [2] and [3], and

indicate that the matrix of Caughey and Gray is, in general, not

optimal.

SOME EXAMPLES

EXAMPLE I: Consider the differential equation

+ 2_ + (l+f(t))x = 0 , (17)

studied by Kozin [2], Caughey and Gray [3] and Ariaratnam [4]. It

is assum&d that Elf(t)] = O, and the equation is rewritten as

0 i I x+ f(t )
-i -2_

0

-i

0

x

0

(18)

or, _ = Ax + F(t)x. Consider, for the matrix "B, the most general

quadratic positive definite form

B _ _l +_2 _l , _2 >° (19)

where
i

__ and __ are numbers to be determined.
±

Simple computations immediately yield that

B-I 1

1 2-_1 1_2 _l + _2

(20)

I
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and that

A' + F'(t) + B(A+F(t))B -I =

i
-_l(l+O 2-_i(_i-2_)-O_lO%

-(l+f)-_l(_i-2_)

_(l÷f)+(2 ]_i_2)[_i(_I-2_)_2]

2 ]G1 (1+0 +(_i-2 _)(_i_2)

(21)

The maximum eigenvalue of this expression is computed as

_max[ A' +F '+B(A+F) B- i] -2 _ J4( _-_i )2+ _ 2= + _2+_i-i-f(t) +2_i(_-_i) ]2

(22)

and setting f = 0 in this equation

_max[A' +RIB -1] = -2_ J4( _-_i)2+ 1 2+ _2[_2+_1- 1+2_z(___z)] 2. (23)

is obtained. Finally,

F'(t) + BF(t)B- (24)

from which the eigenvalue expression

I

I
I

_max[F'(t)

is immediately computed.

+ BF(t)B -I] (2_)

I
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In this particular example, then, the conditions for

almost sure asymptotic stability given by the previous section

become, for the theorem

J lE[-2_ + 4(_-51)2+ 1 2_52_l-l-f(t)+251(_-s1)]2 ] < __
(26)

and from either of the two corollaries

E[If(t)l ] I _ 2_ J4(_-51)2+ i 2 ]2[
-- _ _ _2 52+GI-I+251 (_.51) £ (27)

for some 51, and some G2 > 0 and e > 0. If the stability con-

ditions are desired in terms of E[I f(t)l] , the optimum values of

(_i and 52 for equations (26) and (27) coincide and are easily

computed as

= = _ _-- ,

2 J_
G 1 = _ , 52 = _ , if _ __m2 3

(28)

upon which the stability conditions (26) become

- 2 '

(29)

I

I
I
I
I
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while conditions (27) yield

ECIf(t)l} --<Z- m ,

2

(3o)

As expected, conditions (29) are weaker than conditions (30); this

is strongly emphasized by obtaining stability conditions from (29)

and (30) in terms of E{f2(t)} through the use of Schwarz's in-

equality, remembering that E{f(t)) = O. This process yields the

stability conditions

E[f2(t)] _- 4_2(1- 2) . c

E[f2(t)} _-<4_2_i _ ¢

2 '

4}
, _---

2 '

(29' )

from (29) and, from (30)

E[f2(t)} _- 4_2(1-_ 2) - c,

E[f2(t)] -_ 1- c , _>J_

(3o')

I

I
I

a much more meager result.

If, at the outset, it is desired to obtain stability con-

ditions as a function of E[f2(t)], then the values

I
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_- -- + 1 (31)
_i _ , _2 2

are optimal for equation (26) which yields

E[f2(t)] < 4_ 2 (32)

These results are a considerable improvement over those

of [2] and [3]. Figure i displays these results and those of these

two references in a pictorial form. It is of interest to note that

either (29') or (32 ) show that, for almost sure asymptotic stability,

it is possible to let E[f2(t)] -_ as the damping _ increases;

this result therefore answers a question raised by Mehr and Wang

[6] in their discussion of [2]•

EXAMPLE 2: As a second example consider the equation

+ (2_+g(t))_ + x = O, E[g(t)] = 0 , (33)

which is rewritten in the usual companion form yielding_ in the

notation of (i),

A __. (34)

Using again the matrix B given by (19) a simple computation yields

I

I
I
I
I

I
I
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kmax[A' +F' +B(A+F)B-1]= -2{-g(t) +

l 2
+ #(g(t) +2{-2_1)2 + _2 [_2+Gl-l+Glg(t) +2_I({'_I) ]2

and

(35)

{_max[ F' (t)+BF(t) B-1]-_min[ F '(t)+BF(t) B" i]] =

1 2

= Ig(t)l4 a_2 (36)

Hence_ in this case, the theorem of the previous section yields#

for stabilty

J I2+ I 2
E[-2_+ (g(t)+2_-2G1) 722 [G2+_l-l+Glg(t)+2Gl(_-G)] 2 <- -_ ;

(3V)

either of the two corollaries give instead the condition

2

E[Ig(t)l ] i +2 <-- 2_ - G24<_ -I+2GI(_-GI)] 2 -

A straightforward computation yields_ in the case that

stability conditions are desired as functions of E[Ig(t)l]_ that

the optimum values for _l and (_2 for equations (37) and (38)

coincide and are

I
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C_I = _ O_2 = i__ 2 ,

2

C_I = --------, C_2 = -- ,

x/{2+1 { 2+1

(39)

:}ridthe conditions of stability become, for the theorem, equation

(37),

E{Ig(t)l:l__2__ - c

E{Ig(t)+2_ 2 I] _-2_

, _ -_

_2 2

(40)

and for either of the corollaries, equation (38),

E{Ig(t)l ] <=2_ 1-J'T_-c
2 JT-1

- 2

E{lg(t)l] <=2_[4z+-_ -1]- c,
2 J_-i

(41)

It is noted that equation (40) gives weaker conditions for stability,

since application of Schwarz's inequality to this equation gives the

stability conditions

E{g2(t)] __ 4_2(i__ 2) _ e

E{g2(t)] __ 4 2_-

VTT 

_2 Q_- -i
, <-_ ;

_2 _J7-i
(4o')
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If stability conditions are desired as a function of

O

Wife(t)], the optimum values

_2
_I =-- ' a 2 = 1

l+_ 2 (1+_2) 2

(k2)

applied to equation (37) yield, after application of Schwarz' s

inequality, the stability condition

E[g2(t)] < k_ 2

i+_ 2

(43)

These stability results are shown in a pictorial representation in

Figure 2.

EXAMPLE 3: Consider, in this case, the differential equation

_" + [2_ + g(t)]_ + [t+f(t)]x = 0 , (44)

a generalization of the two previous differential equations. Using

the same matrix B of equation (19) and repeating the computations

indicated in the previous examples the following conditions for

almost sure stability in the large are obtained: from the theorem

E{ _2 _+ _(g(t) +2 __2_1) 2 + 1 2_-_2 Cz2+CZl-l+_lg(t) -f(t) ÷2CZl(_-_1) ]2 ]

< £
(45)

I
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from Corollary i

1 ]2
E(Jg2(t)+ _ [f(t)-CElg(t) _-

i 2

E(2_-,/_(_-GI)2+ _ _-GI)2[_2+_i - I+2GI(
- E

(46)

and from Corollary 2

2

E[If(t)l + Ig(t)l + G--_- ]

__ _ _,._(_+G_-l+2(_( _-c_l) ]2 .

(47)

Inspection of these last three equations shows that, in

general, unless f(t) and g(t) are related no optimum matrix B

exists. Indeed, if stability conditions as a function of E[f2(t)}

and E[g2(t)] are desired, equation (45) yields, upon application

of the Schwarz's inequality, the condition

i 2 !2
52E{g2(t)]+[_lE[g2(t)]2+E{f (t)] a] __ 4G2_[_2-_2+l+(_-_l)212-e,

(48)

and it is immediately seen that, for fixed values of 51 and 52 > 0,

it is not possible to obtain simultaneously results which coincide

with those given by equation (32), in the event that g(t) _ 0, and

with equation (43), if f(t) _ 0. Hence, the choice of 51 and

G 2 depends on the relative magnitudes of E[f2(t)] and E[g2(t)).

I
I
I

I
I
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Th<" two extreme choices for _i and _2 are given by equations

(31) and (42), in which cases we obtain the stability conditions

(1

({2+l)E[g2(t)]+[{E[g2(t)]½+E[f2(t)]½]2 -< 4{2_c,

(49)

(i+_2) 2 )E[g2(t)] E(g2(t)]m+E[f (t)]_]2< 4i+_ 2 i+_

The first of these equations yields equation (32) if g(t) = O,

while the second becomes equation (43) for f(t) = O. Appropriate

choices of _l and _2 > 0 will give results bounded by these

two extremes.

If results are desired as functions of E[If(t)l ] and

E[I g(t)l ], equation (47) can be optimized by the values

2

in which case the stability condition becomes

E[If(t)l+Ig(t)l] -<2{ i-_2 -c, if {2_<_%-_! (50)
2 "

For _-'-_-_-] it is not possible to optimize simultaneously, and

one is again forced to consider the relative magnitudes of E[ If(t)l ]

and E[Ig(t)l }. To obtain extreme values the values for _l and

_2 of equations (28) and (39) are used yielding

I
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i i '

C

if

if

(51)

Again, appropriate choices of GI and G2 > 0 will yield results

between these extremes.

As indicated previously, the results of this example are

rat.her disappointing since they indicate that an optimum quadratic

norm does not exist. On the other hand_ it appears that if a dif-

ferential equation has only one time varying coefficient then the

determination of such a norm does not appear amenable to simple

analysis.

EXAMPLE 4: An Application. Consider the application of the theorem

of the previous section to the study of the stability of the solu-

tions of the differential equations of the kinetics of a simple

nuclear reactor problem. A set of differential equations modeling

such a system is

where

= P_t/-v(_ g n + %C
L

&=_ n- kc

c = concentration of total delayed neutron precursors (c_0)

I
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= neutron effective lifetime (l > O)

n = neutron density (n _ O)

p(t) = reactivity_ a function of time

= total delayed neutron fraction (_ > O)

k = mean decay constant of delayed neutron precursors. (k > O)

This set of equations and its variants have been the subject of

numerous studies [7]. In [8]_ for example 2 it was proved that if

p(t) is sinusoidal 3 for every frequency of the sinusoid and values

of the parameters, the solutions of (52) are unstable.

For notational simplicity_ let

and define

i
Xl = n , x2 = c , a : _-, b = T (53)

E[_(-_] = -m , f(t) : _ + m . (54)

I

Equations (52) then becomes

Il °1X + f(t) X ,

0 0
(55)

in the same form as given by (i). Application of the matrix B

given by (19) yields_ after some computations and application of

Schwarz's inequality_ that the theorem of the previous section will

I
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predict stability for some 51j 52 > 0 and e > 0 if

2
E[f2(t)](G2+51 ) __ 452k[m+b+Xs1]_[b+k(Gl+C_2)-51(m+b+X51)}2-e. (56)

to be_

The optimum values of 51 and 52 are immediately found

b (57)
51 = O, O_2 = _

upon which (56) becomes

E[f2(t)} _ 4mk ; (58)

or, in the notation of equation (52), the condition for almost sure

asymptotic stability in the large becomes

E[p(t) 2} __ E{p(t)} 2 - 4k_E[p(t)}-¢ . (59)

It is evident from this expression that E[p(t)} must be negative

for stability. In the specific case that the reactivity varies

sinusoidally as

p(t) = -m + h sin cut (60)

stability condition (59) becomes

I
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h2 _- 8 mL%- c
3 (61)

for some £ > O.

CONCLUSIONS

A simple theorem that gives sufficient conditions for

the almost sure stability of linear time varying systems has been

presented. As the applications of this theorem and its corollaries

to examples show, the stability results obtained are quite good

and simple to use. The question of determination of the optimum

quadratic norm for a system of differential equation with only one

time varying coefficient has not been resolved_ and remains an

open problem.
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Energy Functions for Morse Smale Systems

by

K. R. Meyer

I. Introduction.

In [i] Smale introduced a class of vector fields on a mani-

fold that are similar to gradient fields generated by Morse functions

and have since been called Morse-Smale systems. Morse-Smale systems

are allowed to have a finite number of closed orbits and singular

points but they share with gradient fields the property that the

and e limit sets of every trajectory can only be a singular point

or a closed orbit. Hence there is no complicated recurrent motion.

A Morse-Smale system without closed orbits is called gradient like. In

[2] it is shown that for every gradient like system there exists a

Morse function that is decreasing along trajectories. In this paper

a larger class of functions is considered, called _-functions_ and

it is shown in Theorem i that for every Morse-Smale system there

exists an _-function that is decreasing along the trajectories of

the system. This reminds one of the energy function associated to a

dissipative system in mechanics and hence the name _-function.

The construction of the S-function requires little more

effort but the added generality has suggested new questions that are

discussed here. It is natural to ask if the association of an

_-function to a Morse-Smale field is unique in some sense. Theorem 2

establishes that the functions corresponding to a particular field

are topologically equivalent.
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Several interesting special results are also obtained when

the manifold is compact and two dimensional. In this case one has

a necessary and sufficient condition for structural stability in

terms of _-functions and moreover there is a one-to-one corre-

spondence between topological equivalence classes of structurally

stable fields and _J_-functions.
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II. Definitions and Preliminaries.

In this paper smooth will always mean C . Let M be a

closed smooth manifold of dimension m with a distance function d

inherited from some Riemannian metric. Rn will be Euclidean n-

space, Sn the unit sphere in Rn+l and Bn the open unit ball in

Rn. If X is a smooth vector field on M then _t will denote the

1-parameter group of diffeomorphisms generated by X. If p _ M then

_p) will denote the trajectory of X through p, i.e. y (p) =

V_t(p). If M then the and limit sets of _(P)P E are

defined in the usual manner by _(p) = ( } _ _t (p) and _(p) =vGO tG_

If A is a subset of M then

logical interior of

A ° will denote the topo-

A and A the topological closure of A.

Definition: A smooth vector field X will be called a Morse-Smale

system (or field) provided

i) X has a finite number of singular points, say _l,...,_k,

each of generic type. A generic singular point is a

singular point such that in local coordinates the matrix

of partial derivatives of X has eigenvalues with non-

zero real parts.

2) X has a finite number of closed orbits (i.e. periodic

solutions), say _k+l,...,_n, each of generic type. A

generic orbit is a closed orbit such that all the character-

istic multipliers, except the one corresponding to the orbit

itself, have modulus different from one.

3) For any p e M, _(p) = _i and _(p) = _j for some i and j ,

I
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4) If _i is a closed orbit then there is no p e M-_ i

such that (z(p) = _i and c0(p) = _i"

5) The stable and unstable manifolds associated with the

_i have transversal intersection.

The sets _i,...,_ n will be called the singular elements

of the field X.

denote the unstable and stable manifold
Let W i and W I

associated to _i" See [1] and [2] for a discussion of condition 5)

and W_.. Note that in [1] transversal inter-and definition of W i l

section is called a normal intersection. A large number of the

lemmas in [i] can be summarized by the following:

Lemma: Let X be a Morse-Smale system on

that there is a trajectory not equal to _i

set is _i and whose

i)

2)

co-limit set is _j.

M. Let _i _" _j mean

or _j whose n-limit

Then _- satisfies:

it is never true that 6i T" 6i

if _i _" _j and 6j_-6_ then _i _- 6_

a partial ordering of U6i )

__ dim W. and equality can3) if _i _" _j then dim W i J

only occur if _j is a closed orbit.

(thus)- is

Let E be a smooth function from M into R and let

denote the set of critical points of E. Let _. denote the set
l

of points in _ where the Hessian of E has nullity i. It is

well known (see [3 ]) that A° is a finite union of points, say

I
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51,...,5k, and there exists a coordinate system (Ni,xi) such that

-1
EOx i : E(_i)+ Q(x)

where Q is a nonsingular quadratic form in x whose index is the

same as the index of the Hessian of E at 5.. For discussion and
1

definitions relevent for these functions see [ 3 ].

Definition: A smooth function E from M into R will be called

on _-function for M provided

2) _ is the disjoint union of a finite number of

circles, i.e. closed connected one dimensional sub-

manifolds of M, such that the Hessian of E is

constant on each circle. Denote these circles by

5k+i,...,5 n.

3) For i = k+l,...,n there exists a neighborhood N.
1

of 5. and a diffemorphism x. such that x. maps
1 1 1

N. into the product of Bm-1 and S1 if N. is
1 1

orientable or into the twisted product of Bm-1 and

S 1 if N. is nonorientable with the property that
1

-1
E o x.1 = E(gi)- - + Q(x) where Q is a nonsingu3_ar

quadratic form in Xl,...,Xm_l, the coordinates in

Bm-l, and is periodic of period 1 in Xm, the

coordinate in S1. Moreover, for each point in S1

the quadratic form has index equal to the index of

I
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i E on 5..
1

i
and

I

I
I

In this paper the connection between Morse-Smale systems

-functions is investigated. In this respect the _-func-

tion is closely related to the field when _ is decreasing along

trajectories. To formalize this we need:

Definition: Let X be a smooth vector field on M. Then an

_-function, E_ for M will be called an _-function for X

i

!

provided

i) XE(p) < 0 for all p e M-A, i.e. E is decreasing

along the trajectories of X or the trajectories of

!

!

X are transversal to the level lines of E

2) if p is a singular point of X then p _ 2_

9) there exists a constant _ > 0 such that on each

i -XE(p) _ Kd(P,Si )2 for p _ N i

i III. Existence of _-functions.

!
The first result is that Morse-Smale systems admit

-functions_ that is

I

I
I

Theorem i: If X is a Morse-Smale system then there exists an

_-function for X.

Proof: The first step is to define the P-function on the _i

and since E must be decreasing along trajectories this must be

i

i

done in a consistent way.

that is, one can find n

The lemma shows that this can be done_

real numbers _i such that if 8i _ 8j

N.

1
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then _i > _j" Thus we define E on the _i by E(_i) = _i and

then construct E globally so that 5.1 = Pi and E is decreasing

along trajectories. Next E must be extended to a neighborhood of

the Pi in such a way that the nondegenerating conditions are

satisfied. If Pi is a singular point then in local coordinates

X has the form x = Ax + f(x) where f(O) = df(O) = 0 and the

eigenvalues of A have nonzero real parts. By Liapunov theory there

exists symmetric matrices Q and C_ C positive definite and Q

nonsingular such that A'Q + QA = -C. Moreover_ the index of Q is

equal to the number of eigenvalues of A with positive real part.

If we define E(x) = _i + x'Qx then by standard Liapunov arguments

there exists a neighborhood sufficiently small and a constant gi > 0

such that -XE(p) _ gid(x,p) 2 in this neighborhood. Take the N i

sufficiently small that the above holds and so that they do not over-

lap.

Now around a closed orbit Pi one can choose a neighbor-

hood N[ and a diffeomorphism x[ mapping N_ into Bm-Ixs I or
1 1 1

Bm-I twisted product with S' (if N[ is non orientable) such
l

that if y is the coordinates in Bm-I and e is the coordinate

in _ then X takes the form

: A(e)y + Y(e,y)

where A is an (m-l) x (m-l) periodic matrix of period I i.e.

A is a function on SI. 8 and Y are periodic of period i in e

i
I
I

I
I

I
I

I
I

I
I

I
I
I

I

I
i
i
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e(e,o) : o and Y: o(llyll).

matrix solution of u' = -uA

where S is constant and P

By Floquet theory the fundamental

can be written in the form eSep(e)

is either periodic or skew periodic

of period i

By assumption

Liapunov theory there exists symmetric matrices Q and C_ Q

nonsingular and C positive definite such that sTQ + QS = C.

-i
fine E o x i = Gi + YTP(e)TQP(e)Y by direct computation then

i.e. either P(e) = e(e+l) or P(e) = -e(e+l).

S has no eigenvalue with zero real part and so by

where _ = o(IlYlle). We again re-

so that they do not overlap and so

PcN i.

XE = -yTpT(e)cpT(e)y + 6(e,y)

strict the neighborhood N.
I

that -XE(p) __ Kd(Si, p)2 for

De-

Thus the S-function is now defined in neighborhoods of

the singular points and closed orbits of X. The extension of this

function can now be =oo_m_1_._......_ ....... by the same procedure as in _2 ]

As a partial converse of the above theorem we have

Proposition: Let X be a smooth vector field on M. If there

exists an g-function for X then X satisfies the conditions l)

2) 3) and 4) in the definition of a Morse-Smale system. Moreover_

the field X can be approximated arbitrarily closely in the Cr-

topology for fields on M by a Morse-Smale system.

The first part follows by standard Liapunov arguments

and the second part is established essentially the same way as

proposition 2 in [4].

If M is compact and 2-dimensional the above result can

be sharpened. In this case Morse-_nale systems are the same as
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structur_ stable systems by a theor_ of _oto [5]. If E is I

_-f_ction for X such that _l the sources of X lie in

E-I(1); _i sadie points of X lie _ E-I(o) _d _i sinks of I

X lie in E-l(-l) then E will be c_led a speci_ _-f_ction I

for X. It is clear fr_ the above that if M is compact _d two-

d_ension_ then the construction of _eorem 2 could be made to yield I

a special _-_nction for X.

If E is a special _-f_ction for X then there can I

be no trajectory joining saddle points of X since E is decreas- I

ing _ong trajectories. Bus the stable _d _stable m_ifolds have

tr_svers_ intersection. Hence I

Coroll_y: If M is compact _d two d_ensional then a necessary I

_d sufficient condition for X to be st_cturally stable is the

existence of a special _-f_ction for X. I

IV. Uniqueness of_-f_ctions. I

Clearly the _function const_cted in _eorem 1 is not

_ique but if one introduces the concept of topological equiv_ence I

a fo_ of _iqueness c_ be est_lished. I

Recall (see [6]) that two functions E _d E' fr_ M to

R are said to be topologically equivalent if there exists h_e_o_hi_s I

f _d g, f:M_M _d g:R _ R such that the following diagr_ commutes I

M,,, E >R I

M E'. I
I
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I Recall that two vector fields X and X' on M are said to be topo-
logically equivalent if there exists a homeomorphism h. M _ M

I which sends the trajectories of X into the trajectories of X'.

In general two _-functions for two topologically equiv-

I alent fields are not topologically equivalent since the _-functions

are defined quite arbitrarily on the singular points and closed orbits.

i To obtain uniqueness some regularity on the way the _ -functions are

i I defined on the _i's is necessary. This could be done by uniquely

specifying the way the functions are defined on the _i's as was done

I in the definition of the special H-functions for two-dimensional

fields. Instead of this we assume that the _-functions are defined

I correctly on the critical elements.

I Since hence forth we shall be considering two fields and two
functions we shall use the same symbols as before and all unprimed sym-

I bols will refer to one system and all primed to the other.

I Theorem 2. Let X and X' be two Morse-Smale systems on M that are

topologically equivalent under the homeomorphism h. Let E and E'

I e X-functions for X and X' respectively. Then if the two

_ -functions are equivalent on the singular elements_ i.e. on the

I singular points and closed orbits_ then they are topologically equiva-

I lent. That is to say if there exists a homeomorphism g: R -_ R such

that the diagram

I t.,[
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commutes then E and E' are topologically equivalent.

Proof: Let _i and _ be so numbered that h(_i) = 8_. Observe

that g is by assumption a homeomorphism of R into R that must

satisfy a finite number of other requirements, namely goE(Si) =

E'(_). If such a g exists then a smooth g exists satisfying

the same conditions. Hence we can assume that E and E' agree

the singular elements since otherwise we would consider E and _oE'.

We first define a special neighborhood of one singular

element. Let _ represent any one of the 8i or _ and N,x and

E the corresponding Ni,N_,xi,x_,E or E'. Then a N-neighborhood,

of _ is defined as a closed neighborhood of _ contained in N

such that the boundary of P is the union of three sets: I a m-1

closed submanifold of M that lies in the level line E-l(E(_)+_)

for some g > O or I = @, 0 a m-1 closed submanifold of M that

lies in the level line E-I(E(_)-_) for some g > 0 or 0 = _ and

U the union of trajectories that join the boundary of I to the

boundary of O.

Such a neighborhood always exists as can be seen by the

following. If _ is a source take P to be the set of points in N

where E is greater than E(_)-g with g small and positive. If

is a sink P is defined similarly. Let _ be a saddle point.

Then E(x) = E(_) + Q(x) in N where Q is a nonsingular quadratic

form. Let T be the quadratic form that is equal to Q on the sub-

space of Rn where Q is negative definite and zero on the complement.

For g and 5 sufficiently small the set I of points p where

I

I

I

I

I

I
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I
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p _ E-I(E(8) + _) and -T(p) __ 5 is contained in the interior of

N.

Moreover, if _ and 6 are sufficiently small one can

also fulfill the requirement that the set of all points p that lie

on a trajectory through I and satisfy E(8) - _ <-E(p) __E(_) +

is contained in N, let P be the closure of this set. It is easy

to see that P is a closed neighborhood of 8 contained in N and

that the boundary of P is composed of I as defined above, 0

and U where 0 and U satisfy the requirements of the definition

of a O_-neighborhood. O_-neighborhoods for closed orbits are con-

structed in a similar way.

Let P'l be a --_-neighborhood for _i_ i = k+l_k+2_ ..._n

and P_ its interior. We first construct f on M- _i - 0 P_.
z I k+l z

n pOLet p ¢ M - _i - U and define f:p _q where q is defined
k+l l

as the unique point on the X'-trajectory through h(p) that satis-

fies E'(q) = E(p). To make sure that this map is well defined

observe that E(qDt(p)) and E' (qD_(h(p))) tend to the same limit as

t -_ +_ and the same limit as t _ -m and moreover both are decreas-

ing functions of t. Thus f is a homeomorphism taking level line

into level line where it is defined.

Now f can be extended to the singular points by f(_i) =

B[ for i = l_...;k. To see that f is still a homeomorphism note
wT_

that f maps U-_-neighborhood of _i onto __-neighborhoods of

_[ and conversely. For closed orbits the extension is more difficult

since the _i no longer consist of single points.

I
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The homeomorphism f is defined on the boundary of Pi_

i = k+l;..._n and maps the boundary of Pi into the boundary of a

_-neighborhood, P_, of p_. To see this observe that the image

I[ of I. under f is contained in a level line of E' and
I I

similarly for the image of O. Moreover the image of U is the

union of X' trajectories joining the boundary of I' to the bound-

ary of 0'. P[ is defined once I' or O' are defined as can be
m

seen by our construction of __-neighborhoods.

We now show how to extend the definition of f to the

interiors of Pi; i = k+l_...;n. Since we shall be working locally

we shall drop the subscripts. For definiteness let us consider the

case when the neighborhood of p and the stable and unstable maul-

folds of p are orientiable. The nonorientable cases are similarly

treated.

First let p be a source or a sink. Let N be a neighbor-

m SIhood of p containing P and x a diffeomorphism x:N _ B X

= -i S1 Tx (y,e), y:N _ Bm e:N _ such that in N, E(x) = E(p) + y y.

Let P' N' x' y' e' be similarly defined. For simplicity let

E be zero on p and i on the boundary of P. f is defined on

the boundary of P and let f = h on 8. Let p =(y,e) ¢ pO _ p.

p is on the curve _(O,e) + (l-_)(llyll-ly, e). Let f(O,e) = (O,e_)

-ly,e)) , ,and f((llYll = (yl,81) and let q be the unique point on the

curve T(yl,81)'' + (I-T) (0,8_) that satisfies E(p) = E' (q). By de-

fining f(p) = q we see that f has been extended to the criterior

of P as a homeomorphism taking level line into level line.

Now let p be a saddle type closed orbit. Let N be a

neighborhood of p containing P and x = (y_8) a diffeomorphism

I
I
I

I

I
I

I
I
I
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I
I
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y:N _B m-I and e:N _S I such that in these local coordinates

E(_) + yTQy where Q = diag (i,...,i,-i,...,-i). Moreover, let

y , be similarly defined. Let H be a neighborhood of

completely interior to P. Define f on H by f:p _ q where p e

and q _ K' and p and q have the same numerical coordinates in the

unprimed and primed coordinates respectively.

Thus f must be extended to pO _ K. This extension

can be accomplished by dividing pO _ K into several parts each of

which has a simple geometric type. Let a and b be the real

E(x) =

N f ,x !

I
I

I
I

I
I

I

numbers such that the region of the boundary of n that is a region

of ingress resp. egress is in the level line E-l(a) resp. E-l(b).

Consider K1 = E-I(_) N (p_EO) and _ = E-l(b) n (e__O). f is

defined on the boundary of Kl and K2 and topologically K1 and

K2 are just products of unit intervals and spheres. Let LI

(P-n ° ) N [pEM:E(1) _ E(p) _ a], L2 = (p__O) O [pgM:E(a) _ E(p)

E(b)) and L3 = (p__O)n (pcM:E(b)_ E(p)_ E(O)).

Topologically LI_L 2 and L3 are just the product of

the unit interval and spheres, f is defined on the boundary of

and K2 and so we first extend f to KI and K2.

fined on the boundary of LI_L 2 and L3 and so f

to their interiors.

KI

Now f is de-

is then extended

I

I
1

Each extension is carried out in the same way as the ex-

tension was carried out for the source because in each case there is

a set that acts as the center. That is if one of the sets is

I x I X SI then (0,0) X SI is the center.

The center is mapped homeomorphically on the center by

I

I

fiat and then the extension is carried out by joining the center to

the boundary by lines and carrying points proportionally.
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Of course for special _-functions the homeomorphism g

may always be taken as the identity. In the case where M is compact

and two dimensional the converse of Theorem4 holds also. Namely

Proposition: Let M be a compact and two dimensional smooth mani-

fold. Let X and X' be smooth vector field on M and let E

and E' be special _-functions for X and X' respectively.

If E and E' are topologically equivalent then X and X' are

topologically equivalent.

Proof: Let f be the homeomorphism of M that takes level lines

of E into level lines of E' i.e. E = E'of. f sets up a corre-

spondence between the critical elements of E and E' let them be

so numbered that f(Si) = 5_i and let the _i and _[ be numbered

as sets. Let P = E-l(o) and P' =, =_
so that _i = 5i and _i l

E'-l(o). Then f is a homeomorphism of p onto P'. Define h

to be equal to f on P.

The first thing to be established is that if p c P and

I !

_(P) = 8i and e(p) = _j then _'(f(p)) = _i and _'(f(p)) = _j.

Let P _ F and p not a saddle point and let p* = f(p). Consider

the X'-trajectory through p* and let it be reparameterized so that

it is a map u from (-l_l) into M where the new parameter is the

value of E', this can be done since E' (_(p*)) is a decreasing

function of t. To be precise u:(-1,1) _M such that u(_),

_ (-1,1), is the unique point on the X' trajectory through p*

such that E'(u(_)) = _. In a similar manner let v:(-l_l) _M be

the reparameterization of f(_t(p) ) by values of E'. To be precise

I
I
I
I

I
I

I
I

I
I
I

I
I

I

I
I
I
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v(G), a _ (-i,i), is the unique point on f(_t(p)) such that

E' (v(G)) = G. We want to show that u and v are isotopic with an

isotopy that moves points in a level line. That is we want to show

that there exists a map V:(-I,I) [0,i] _ M such that V(.,O) = u

and V(-,I) = v and moreover E'(V(_,t)) = G for all t e [0,i].

I
I

I
I

Clearly this will establish the fact that _ and e limit sets of

trajectories correspond as described above.

Let A be a small disk about p' such that A contains

no singular points of X'. For _ different from zero the level

lines E'-l(_) is a smooth one manifold and so there is a unique

arc a in A joining u(_) to v(_) of arc length s(_). Let

V(_,t) be the unique point on the arc a such that the arc length

I
I

I

from u(_) to V(_,t) is ts(a). Thus the isotopy V is defined

so long as _ is small but the extension is now obvious and so our

claim is established.

The sets [p e M:E'(p) _ ½] and [p e M:E' _ -½] are the

disjoint union of 9_-neighborhoods of all the sources and sinks

I
I

I

respectively.

The homeomorphism h is now extended in the following way.

Let p be a point of M not on a separatrix of X and such that

1
-_ _ E(p) _ ½. The X trajectory through p meets at p* let q

be the unique point on the X'-trajectory through h(p*) = f(p*)

I
I

I
I

that satisfies E(p) = E'(q). Now extend this map to all of

[p e E:-½ G E(p) _ ½] so that separatrix goes to separatrix and

level line of E to level line of E'.

Thus the map f is defined on all but the interiors of

_-neighborhoods of the sources and sinks. The map f is defined

on the boundaries of these _--_-neighborhoods and takes the boundary
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of one particular J_-neighborhood of an X critical element into

the boundary of a ___-neighborhood of an X' critical element of

the sametype.

But it is shownin [7] that if one is given two critical

elements of the sametype and an arbitrary homeomorphismof the

boundaries of _-neighborhoods for these two critical elements

then the homeomorphismcan be extended to the interior of the neigh-

borhoods taking trajectories into trajectories. Thus f can be de-

fined globally.

I
I
I

I

I
I

I
I
I
I

I
I

I
I

I
I
I
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Onthe Linearization of Volterra Integral Equations

I. Introduction.

Given a nonlinear differential equation

(i) x' = Cx + o(Ix I), (' : d/dt)

it is well known that the asymptotic stability of the linear system

y' = Cy implies the local asymptotic stability of the trivial solu-

tion of (i). All known proofs of this fact depend on the fact that

solutions of the linear system decay exponentially or the equivalent

fact that there exists a quadratic Lyapunov function for the linear

system.

(2)

where x,f

g(O) = O. If

linear system

Consider a system of n equations of the form

t

x(t) = f(t) + I a(t-s)g(x(s))ds, t _ 0
O

and g are n-vectors, a(t) is an n × n matrix and

f is "small" this system is often replaced by the

t

(3) y(t) = f(t) + I a(t-s)Jy(s)ds,
O

where J is the Jacobian matrix g' (0) = (_i(0)/_xj).

Levin and Nohel have proved by example that solutions of

equations of the form (3) need not decay exponentially 3 cf. [i,

P. 350, line (2.11)]. Indeed there seems to be no known mathe-

matical justification for linearization of Volterra integrodiffer-

ential equations. The purpose of this paper is to provide in

Section II below mathematical justification for the linearization

I
I
I

I
I
I

I

I
I
I

I
I
I

I

I
I
I
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I
of equation (3) under certain conditions on the matrix a(t)J.

l If f(t)- X ° is constant and a(t)- i, then equation (2)

is equivalent to an ordinary differential equation. In this case

l our criterion reduces to the known condition that the eigenvalues

I

I
I

of J have negative real parts.

The advantage of our method is that one can replace the

local, nonlinear problem (2) by the linear equation (3) and the

linear equation for its resolvent. These linear equations may be

studied using known methods such as transform techniques. In

I Sections III_ IV and V below we give some examples which illustrate

this.

I

I

In the sequel we shall need the following notations and

conventions. Let Rn denote real n-space with a norm Ixl. Let

IDI denote the corresponding matrix norm. Let BC[0_) be the

I

I
I

space of bounded continuous functions on 0 _ t < _ with norm

Ilhllo= sup CIh(t)l; 0 _-t < -].

Similarly BC(R) will be the space of bounded continuous functions

on -_ < t < _ with norm

I Ilhlll= sup £1h(t)l; -_ < t < oo).

I

I

I

II. General Stability Conditions.

Concerning equation (2) we assume:

(A1) a _ Ll(o_t) for each t > 0,

I
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(A2)

(A3)

(A4)

f(t) _ Be[o,®),

g(x) _ cl(Rn),g(O)= 0 and

the Jacobian matrix J is nonsingular.

Since we assume

erality to assume J

only replace a(t) by

tion (3) may be rewritten in the form

J is nonsingular, it is no loss of gen-

is the n X n identity matrix I. We need

a(t)J and g(x) by j-ig(x). Thus equa-

t

(3') y(t) = f(t) + _ a(t-s)y(s)ds.
0

It is well known that the unique solution of equation (3')

has the form

t

(4) y(t) : f(t) - f b(t-s)f(s)ds, (t __O)
0

where the matrix b

matrix equation

(5)

We assume that

Theorem i.

(AS)

¢o > 0 and

is the resolvent kernel determined by the

t

b(t) : -a(t) + f b(t-s)a(s)ds.
o

the matrix b determined by (5) exists for all

t > 0 and Ib(t)l c LI(o,_).

If assumptions (AI-5) are satisfied then there exists

¢1 > 0 such that when the solution y(t) of (3')

I

I
I
I
I

I
I

I

I
I
I

I
I
I

I
I
I
I
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< ¢ the solution x(t) of (2) exists for allsatisfies llyllo - o

- _- ¢i"t_ o an_!IIXtlo

Proof. Since b e LI(o,_) it follows that equation (2) is equiva-

lent to the system

t

(6) x(t) = y(t) - f b(t-s)G(x(s))ds,
O

where y is defined by line (4) and

o(x): g(x)- x : o(Ixl). (Ixl -_o)

Pick ¢i > O such that if Ixl _ el, then

21G(x)l f Ib(s)lds_- Ixl,
0

_d f Ib(slldslg'(x)- II <l. Pick %= _./2. Let Tx(t)
0

the function defined by the right hand side of equation (67.

be

Let

s(o,el) : [h_ BC[O,_);Ilhllo- _l}

Our estimates on c and eI imply that
O

map on S(O,¢l). This proves Theorem 1.

T is a contradiction

Corollary i. If (AI-9) are satisfied, then there exist eI > O

and _2 > O such that when Ilfll ° _- ¢2 the solution x(t) of

(2) exists for all t __0 and satisfies Ilxllo -__l"

Proof. Pick c2 such that

0
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where ¢i is the constant given in Theorem i. Then equation (4)

< e . Thus Corollary i follows from Theorem Iaboveimpliesllyllo-O
above.

Theorem 2. Let (AI-5) hold and let eo and eI be given by

_ andTheorem i above. If I]yl]o _ e°

x(t) -_0 as t -_.

y(t) _0 as t _, then

P be the positive limit set of the solution x(t),

is the smallest set such that x(t) tends to P

P is

Proof. Let

that is P

t _ _. Since x(t) is bounded it is easily shown that

nonempty, compact and connected.

Since x(t) solves equation (6)_

it follows from Theorem 1 of [2] that P

tions of

t

(7.1) z(t) = - / b(t-s)G(z(s))ds,

as

L1y(t) -_0 and b ¢ (0,_)

is the union of solu-

(7.2) Iz(t)l __ e1. (-_< t < _)

be the function defined by the right hand side

z _ BC(-_) and l]zllI __ c1. The estimates

Let Tz(t)

of line (7.1) when

in the proof of Theorem i above imply that

map. Thus z(t) _ O

means that P = {O].

is complete.

T is a contraction

is the unique solution of (7.1-2). This

Thus x(t) _0 and the proof of Theorem 2

Using Corollary i and Theorem 2 we obtain the following

result.

I
I

I
I
I

I
I

I

I
I
I

I
I
I

I
I
I
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Corollary 2. Let (AI-9) hold and let eI and ¢2 be given by

Corollary i above. -- _ _2 and y(t) -_O as t -_, thenIf JJfll° _ __

x(t)* o.

III. Applications: Integrable Kernels.

The purpose of this section is to apply the theory in

additional assumption that a e LI(o,_).Section II with the

shall need the following result.

Theorem 3 (Paley and Wiener). Let

tion b of equation (9) i__s Ll(o,_)

(8)

We

a e LI(o,®). Then the solu-

if and only if the determinant

G@

det (l-f exp (-st)a(t)dt) _ O,
O

in the right half plane Res _ O.

This theorem is proved by a trivial modification of the

proof of Paley and Wiener of Theorem XVIII in [3, P. 60]. Paley

and Wiener use Theorem 3 to study the asymptotic behavior of solu-

tions of equation (3') in case f(t) _ 0 as t _ _. Their re-

sult has the following nonlinear generalization.

Theorem 4. Suppose (AI-4) hold, (8) is satisfied for Res __ 0

and _2 i_s giv___enby Corollary i above.

f(t) _O as t _, then x(t) -_0.

Proof. The solution of the linearized equation (3') is given by

(4). Since f(t) _0 as t _ _ and b ¢ LI(0,_), the Lebesgue

Dominated Convergence Theorem implies that y(t) _ 0. An

I
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application of Corollary 2 completes the proof of Theorem 4.

Levin [4] has obtained another nonlinear generalization of

the Paley-Wiener result. His result is neither stronger nor weaker

than Theorem 4 above. Levin studies a scalar equation (n=l)

while we allow n _ i. Our hypothesis on a(t) is weaker than

Levin's and our hypothesis on g(x) stronger. Theorem 3 is a

local result while Levin's result is global.

The condition f(t) _ 0 is essential to the proof of

Theorem 4 above. If f has a different type of asymptotic be-

havior 3 it may still be possible to analyze the local behavior of

solutions of equation (2). For example in Theorem 5 below, f(t)

is constant but not necessarily zero.

IV. Applications: Integrodifferential Equations.

The purpose of this section is to apply the theory of

Section II to the study of the local behavior of integrodifferential

equations of the form

t

(9) x'(t) = mg(x(t)) + f k(t-s)g(x(s))ds_ x(O) = Xo, (t _ O)
0

where

m = O.

k is locally integrable and m is a constant. We allow

This system can be written in the form of equation (2) if

one sets f(t) _ x° and

t

a(t) = m + f k(s)ds.

0

We wish to investigate the asymptotic behavior of solutions

I

I
I
!
I

I
I

I
I

I
!

I
!
!
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of equation (9) when x ° is small. We remark that the definitions

of stability and asymptotic stability of the trivial solution

x = 0 of (9) are the same as for ordinary differential equations.

Theorem 5. Let f and a be as defined above. If (A3-_ hold,

a • LI(0, _) and (8) i__stru____efo___[rRes _ 0, then for x ° suffi-

ciently small

(i) the trivial solution of (9) is stable and

(ii) each solution of (9) tend______st__o_constant as t _.

Proof.

each _, 0 < _ < el, there exists 5 > 0

when IXol _ 8.

_o prove part (ii) note that if IXol _ _2 then

for all t _ O. Moreover

t t

x(t) = (I-I b(s)ds)x ° - / b(t-s)G(x(s))ds.
O O

It follows from the proof of Corollary 1 above that for

<_ Esuch that ...IIxll°

since b e LI(o,_),

t 00

(I-/b(s)ds)x°= I - f b(s)ds,
0 0

Ix(t)l < eI

exists. By Theorem i of [2] the positive limit set of

the union of solutions of

t

(lO.l) z(t) = (I-/ b(s)ds)x o - f b(t-s)G(z(s))ds,
O -oo

(lO.2) Iz(t)l-_e1.

x(t) is

(-_<t <_)

Let S(0,el) be the closed sphere in BC(R) with center

at the origin and radius e1. Let S° be the subset of S(O, el)

I



lO-lO

consisting of constant functions. The estimates on cI in the

proof of Theorem i imply that the right side of (i0.i) defines a

contraction map on S(0, Cl) and on SO . Therefore the unique

solution of (10.1-2) is a constant function z(t) _ zo. Thus the

positive limit set of x(t) is the single point Zo, x(t) _z °

as t _ and Theorem _ is proved.

For

equation

x small, the limit
O

z is obtained by solving the
O

Z
O : (I-fb(s)ds)x° - (fb(s)ds)G(Zo).

0 0

Let the solution be Zo : F(Xo)" Then F(O) : 0 and F maps a

neighborhood of x = 0 diffeomorphicallyonto a neighborhood of
O

z° = O. This means that the trivial solution cannot be asymptoti-

cally stable.

V. Applications: A Reactor Problem.

The dynamic behavior of a continuous medium nuclear reactor

can be described_ under certain simplifying assumptions, by the

following integrodifferential equations for the unknown u and T:

(ii.i) u'(t) =-_ _(x)T(x,t)dx,

(11.2) Tt : Txx + q (x)g(u(t)), (-_ < x < _, 0 < t < _)

with the initial conditions

(_) u(o)= Uo, T(x,O): f(x). (-®< x < _)

These equations have been extensively studied by Levin and

Nohel, in the linear case g(u) = u c.f. [1,5] and in the nonlinear

I
I
I

I
I
I
I

I

I
I
I

I
i
I

I
I
I
I
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case of. [6]. In the reactor problem g(u) : exp(u) - 1.

We wish to study the asymptotic behavior of solutions of

(ii) using the theory of Section II. Our analysis depends heavily

on the papers [1,9, and 6] both for motivation and techniques.

Since Levin and Nohel have treated the uniqueness problem for (ii-

12) we do not consider it further.

Let * denote the L 2 Fourier transform. If f,_ and

are L2(R), then an elementary application of transform theory

shows that u(t) satisfies the equation

t

(13) u'(t) : -I ml(t-s)g(u(s))ds - m2(t),u(0) = u o
O

where for j = i_2.

co

mj(t) = (1/7[) f exp(-x2t)hj(x)dx,
O

and

hl(X ) = Re Ti*(x)J(-x), h2(x ) = Re f*(x)J(-x).

Using a Taubian theorem Levin and Nohel [i] study the linear equa-

tion

t

(14) v'(t) = -f ml(t-s)v(s)ds - m2(t),v(O ) = Vo.
o

They prove

Theorem 6 (Levin and Nohel). Suppose f,_ an___d _ satisfy,

(A6) > O,Ixl
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(A7) sup {l_(x) l,_(x)l,lf(x)l] < _.

(A8) hi(x ) -_ 0 and hi(0 ) _ 0.

Then the solution v(t) of (14) exists for all t __ 0 and v(t) =

O(t -3/2) as t -_ _.

Corollary 3. If the hypotheses of Theorem 6 are satisfied then there

exists a positive constant K I (independent __°f Vo --and f) such

that for all t _ O

oo

Iv(t)l _-Kl(IVol+llfll),llfll = _ If(x) Idx.

Proof. Let vl(t ) be the solution of (14) when Vo = i and m2(t ) _ 0

and let v2(t ) be the solution when v° = O. Then the general solution

is vl(t)v ° + v2(t ). By Theorem 6 vl(t ) is bounded.

Let V be the Laplace transform of v2. Using lines 5.28 and

5.32 of [i] we see that for -® < y <

V(iy) = H(y) _ .I"exp(-(iy)i/21x-sl)G(x)f(s)dxds

--00 --_

where H(y) is in LI(-_,_) and H depends only on _ and _.

Lemmas 5.1-5.6 of [i] show that V satisfies the hypotheses of Theorem 2

of [8, p. 266]. Therefore

Iv2(t)l _- (2v)-ll IH(y) IdY I la(x) ldx I If(x) ldx"

I
I
I
I

I
I

I
I

I
I

I
I

I
I

I
I
I
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This proves Corollary 3.

Using Theorem 2 and 6 we prove

Theorem 7. Let f,_ and _ satisfy (A6-8). Let g satisfy (A3)

with g' (O) = i. Then there exist a > O (depending only on _,_

and g) such that when lUol __ 6 and llfll<- 5, then the solution

u(t) of (13) exists for all t __ 0 and u(t) -_0 as t -_.

Proof. Let b(t) be the resolvent kernel for equation (14), that

is b(t) solves (14) in the special case v = O and f = _. By
O

Theorem 6 we see that v(t) and b(t) = _(t -3/2) as t -_ _. Thus

b is in Ll(o_). We know from Corollary 3 that Iv(t)l is small

when lUol and Ilfllare small. An application of Theorem 2 completes

the proof of Theorem 7.

Corollary 4. Let the hypotheses of Theorem 7 hold. If 5 is given

by Theorem 7 and llfII,lUol __ _ then u(t) e LI(o_).

Proof. Fix u ° and f with lUol and Ilfll__ 5. Let v(t) be the

solution of (14). There exists K > 0 such that for all t _ O

Ib(t)l _-K(t+l)-3/2, v(t)l _ K(t+l) -3/2

Since u(t) _O_ there exists T > 0 such that if t _ T then

IG(u(t))l = Ig(u(t))-u(t)l _-lu(t)I/(4K).

Let KI be a bound on IG(u( t))l for O __ t _ _. For all t __ O,
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T
u(t+T) = v(t+T) - I b(t+T-s)g(u(s))ds

O

t

- .I"b(t-s)G(u(T+s))ds,

O

T

lu(t+T)l __ K(t+T+I) -3/2 + KK I f
O

(t+T+l-s)-3/2ds)

t

+ f K(t+1-s)-3/21u(T+s)I/(4K)ds ,

O

__K(t+T+I) -3/2 + 2KKI((t+I)-I/2 - (t+T+l) -I/2)

+ _t (t+l-s)-3/21 u(T+s) I/4ds

O

t

__ Hl(t ) + _(t) + _ _(t-s)lu(s+T)Ids.
O

The comparison theorem of Nohel [7_ Theorem 2.1] implies

that for t __ O, lu(t+T)l _-U(t), where U solves

t

(15) U(t) = Hl(t ) + H2(t ) + f H3(t-s)U(s)ds.
O

Since for any t > O,

t

0

LI
it follows that _ _ (0,_). Clearly H 1 and H3 e Ll(o,_) and

f _(s)ds __ 1/2. Thus the right hand side of equation (15) determines
O

I
I
I

I
I
I
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a contraction map on Ll(o,--). Since U(t) dominates lu(t+T)l,

u(t) e LI(o,_). This completes the proof of Corollary 3.

In order to study the asymptotic behavior of T(x,t) we

need the following additional assumption:

(A9) f,_ _ C(R) and _ is locally Holder continuous.

Theorem 8. Suppose g satisfies (A3) and g' (0)= 1. Let f,G

and _ satisfy (A6-9). Then _or u and flfll sufficiently small
O

problem (11-12) has a unique solution u(t),T(x,t) Moreover.

sup IT(x,t)l_o, (t*-)
-_<x<_

and u(t)-_0 as t-_ with u ¢ LI(o,=).

Proof. For u and ilf]i sufficiently small Theorem 7 and Corollary
O

3 imply the existence of a solution u(t) of equation (13) such that

u _ LI(o,_) and u(t)-_O. Given this u(t) define T(x,t) on

-_ < x < _, 0 < t < _ by

(16)

t_

T(x,t) = / G(x-y,t)f(y)dy + / I G(x-y,t-s)_(y)g(u(s))dyds,
--_ 0 --_

where

[7, p.264] we verify that the pair u(t),T(x,t)

and (12). Moreover, for any t > 0

IT(x,t)l_-(4_)-1/2F

G(x,t) = (4wt)-i/2exp(-x2/(4t)). Using the same proof as in

Since g(u(t)) is

is a solution of (ii)

t

If(Y)l_y+(4_)-z/2Fl_(Y)Imy / (t-s)-l/21g(u(s))Ids.

-_ -_ 0

Ll(0,_) it follows by dominated convergence that

I



10-16

fts-i/21g(u(t_s))Ids = ft(t-s)-i/21g(u(s))Ids -_0.

O O

Therefore T(x,t) -* O as t -* _ uniformly for -_ < x < _. This

proves Theorem 8.

Theorem 8 is neither stronger nor weaker than the results

in [6]. The advantage of Theorem 8 is that we avoid a hypothesis on

the interconnection of f,G and _, c.f. [6, line 1.16]. The main

disadvantage of Theorem 8 is that the result is local while the re-

sults of [6] are global.

I
I

I
I
I

I
I

I
I
I

I

I
I
I

I

I
I
I



I

I

I
I

I
I

I
I

I
I

I
I

I
I

I

I

I

[l]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

i0-17

References

J. J. Levin and J. A. Nohel, On a system of integrodiffer-

ential equations occurring in reactor dynamics, Journal of

Math. Mech, 2 (1960), pp. 347-368.

R. K. Miller, Asymptotic behavior of solutions of nonlinear

Volterra equations, Bull. Amer. Math. Soc., 72 (1966),

pp. 153-156.

R. E. A. C. Paley and N. Wiener, Fourier Transforms in the

Complex Domain, Amer. Math. Soc. 1934.

J. J. Levin, The qualitative behavior of a nonlinear

Volterra equation, Proc. Amer. Math. Soc., 16 (1965), pp.

711-718.

J. J. Levin and J. A. Nohel, On a system of integrodiffer-

ential equations occurring in reactor dynamics II, Archive

Rat. Mech. Anal. ii (1962), pp. 210-243.

A system of nonlinear integro-

differential equations, Mich. Math. J. 1__3(1966), pp. 257-

270.

J. A. Nohel, Some problems in nonlinear Volterra integral

equations, Bull. Amer. Math. Soe. 68 (1962), pp. 323-329.

G. Doetsch, Theorie undAnwendung der Laplace - Transforma-

tion, Berlin (1937).

I



I
I
I

I
I
I

I

I
I
I

I
I

I
I

I
I

I
I



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

PA_R [ill

To appear in the Bulletin of American Mathematical Society

Periodic Points of Diffeomorphisms

by

K. R. Meyer f

Center for Dynamical Systems

Brown University

Providence, Rhode Island

%This Research was supported in part by the National Aeronautics and

and Space Administration under Grant No. NGR 40-002-015 and in part

by the National Aeronautics and Space Administration, Huntsville_
under Contract No. NAS8-I1264.



11-2

Periodic Points of Diffeomorphisms

I. Introduction:

In [i] Artin and Mazur prove that there is a dense set

in the space of Ck mappings of a compact manifold into itself

such that for each member of this set the number of fixed points

under iteration grows at most exponentially. This estimate allows

one to define an analytic S-function associated to the diffeo-

morphism that measures the number of fixed points of the diffeo-

morphism under iteration.

The theorem of Artin and Mazur gives no indication as to

whether or not a specific diffeomorphism satisfies such an estimate.

In this note we announce (Theorem i) that the number of

fixed points of the general class of diffeomorphisms recently in-

troduced by Smale [2_3] grows at most exponentially under iteration.

It should be noted that this new theorem is neither contained in

nor contains the theorem of Artin and Mazur.

The method of proof is quite simple. One need only show

that the size of the domain where there is a unique fixed point of

the diffeomorphism decreases at most exponentially by using an

estimate on the domain of validity of the implicit function theorem.

The complexity arises only from the necessity of checking uniformity

at each step.

If.

that

Notation and Theorem.

2
Let M be a compact C -Riemannian manifold and suppose

f: M_M is a diffeomorphism of M. A closed invariant set

I
I

I
I
i

I
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I
I
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I
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I A C M is said to have a hyperbolic structure if the tangent bundle

TAM of M restricted to A has a continuous invariant splitting

I TAM = Eu + E s under df such that

I df: Eu _E u , df: ES _ES

| L1d (x)(u)ll< c nllull

lldfn(x) (v)lI > c-lk-nllvll

l for some fixed constants C > O, 0 < k < i, where x e A_ v e Exs,

I u e Eu and n ¢ Z+'

If f is a diffeomorphism of M and x _ M then x is

i called a wandering point if there exists a neighborhood U of x

such that _ fn(u) = _. A point x of M is called a non-

I neZ

wandering point if it is not a wandering point. Clearly the set of

l nonwandering points of f forms a compact invariant subset of M.

The class of diffeomorphisms introduced by Smale in [2,3]

l is the class of diffeomorphisms of M with a hyperbolic structure

l on the set of nonwandering points of f. This class of diffeo-

morphisms is sufficiently general to include all known examples of

I diffeomorphisms with globial stability properties (see [3] for a

detailed discussion).

l Let Nn(f ) be the number of flxed points of f . Then
. n

l our main result is

2

i Theorem i. If f is a C -diffeomorphism of M into itself with a

hyperbolic structure on the set of nonwandering points of f then

I there exists a constant k > 0 such that

!
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_ Z+N (f) < kn for n e .
n

III. Outline of the Proof:

In what follows J-J will denote the usual Euclidean norm

in Em with respect to a fixed basis. The following lemma follows

easily from the implicit function theorem given in [4], page 12.

C2
Lemma i: Let _n _ n e Z+_ be a map from the closed ball B a

of radius a about the origin in Em into itself with _n(0) = 0.

Let the supremum of the modulus of the second partials of _ be

n
less than bn on B a. Let J(d_n(0)-I)J _ c and J(d_n(0)-I)-lJ _

n
c Then there exists a constant d = d(a,b,c) such that _ has

a unique point in the sphere of radius dn about the origin.

Let (Vi,Yi) and (Ui,xi) , i = l,...r be a finite number
r

of coordinate systems for M such that V i D _i' _Ui D M and
i

xi = yiJUi. Consider the sets Yi(Vi) and xi(Ui) in Em. There ex-

ists a constant a > 0 such that each point of xi(_i) is con-

tained in a sphere of radius a completely contained in Yi(Vi).

We shall count the number of fixed points of fn in each xi(_i).

Let J1"JJ denote the norm induced in Yi(Vi) by the

metric on M.

Lemma 2: Let x ° be a fixed point of fn,xiofnoxil , and let A

be the Jacobian matrix of fn evaluated at x_ then there exist

constants N and e > 0 such that

J(A-I)J _- Cn and J(A-I)-IJ <_-Cn

I
I

I
I
I

I
I

I
I
I

I

I
I
I

I
I
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for n _ N.

Comments on the Proof of Lemma 2.

At this point the strong uniformity of the hyperbolic

structure on the set of nonwandering points is used. Because the

set of nonwandering points is compact_ and the splitting is con-

tinuousthereexistsa constante _->i suchthatthenorm I1"11

a_dthe normII I"111 defined by the coordinatessuchthat A has

the form A =
AI 0

0 A2

df on

where Aj_ j = 1,2_ is the representation

of the mapping Eu and E s
x x
o o

respectively satisfies the

condition

e-llll'lll -_I1"11-_elll'lll.

With this uniformity at hand the rest of the lemma follows by

standard matrix methods.

Since the total volume of xi(_i) is finite and fixed

points of fn in xi([i) can be covered by disjoint balls of

dn
radius _-- the required estimate follows from the above two lemmas.

It seems likely that the general outline given above can

be used to give a similar estimate for the number of periodic orbits

for a flow on M having a hyperbolic structure on the set of non-

wandering points. The author is presently working on this problem.

i
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I. INTRODUCTION

In the study of weakly nonlinear systems, the most useful

elements from the theory of linear non-homogeneous ordinary differential

equations with autonomous homogeneous part are i) the variation of con-

stants formula_ 2) the decomposition of Euclidean space into the direct

sum of subspaces which are invariant with respect to the solutions of

the homogeneous system (the Jordan canonical form) and 3) sharp exponential

bounds on the growth of solutions on these invariant subspaces. Once

these facts are well understood, many problems in the theory of stability,

asymptotic behavior and nonlinear oscillations can be discussed.

For delay differential equations of retarded type these three con-

cepts have been developed and applied to problems of the above

type (see,for example, [1],[2],[3,4],[5,6],[7]).

For delay differential equations of neutral type, the

theory is not so well developed even though some results are

contained in the book of Bellman and Cooke [ i]. In equations of

neutral type, the first difficulty arises because the derivative

of a solution occurs with a retardation. This leaves much freedom

in the choice of the topology on the solution space as well as on

the space of initial conditions. The topology must be chosen

in such a way as to obtain solutions which are at least continuous

with respect to the initial data. That such a choice is not obvious

may be easily seen by consulting the papers of Driver [8,9] where

a general existence and uniqueness theorm is given for a rather

broad class of neutral equations.

I
I

I
I
I

I
I

I
I

I
I

I
I
I

I
I
i
i



I

I

I

I

i

I

I

I

I

I

I

I

I

I

I

I

I

I

12 -3

Our approach in this paper is to investigate a class

of functional integral equations in the space of continuous

functions. This class includes certain types of equations of

neutral type and does include some equations which arise in the

applications. For this class of equations, we obtain precise

analogues of the above stated properties of ordinary differential

equations. Furthermore_ the decomposition of our space into

invariant subspaces is given in a way that is amenable to compu-

tations. As specific applications of the theory 3 we give a stability

theorem and extend the method of averaging to these systems.

The symbol [ ] indicates references in thebibliography_

Roman numerals refer to sections and Arabic to formulas.
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Let Rn be a real or complex n-dimensional linear space of

column vectors with norm I'I and let C([a,b],R n) denote the Banach

space of continuous functions from [a,b] into Rn with norm ll-ll[a_b ]

given by llq011[a,b] = sup [lq0(@)l : @c [a,b]]. Let r be a fixed non-

negative numberand let C = C([-r,O]_R n) and II'II = ll'll[_r,O]-

Let £p([a,b],Rn), 1 -_p < _, be the set of Lebesqueintegral

functions from [a,b] into Rn with the norm of any _ in _p([a,b],R n)

b 1/p £ ([a,b],R n) denote the setdefined by [/alqD(s)IPds] . Also let

of essentially boundedmeasurable functions from [a,b] into Rn, with

the norm of any _ in _ ([a,b],R n) given by ess. sup lq0(e)l. We
n2

shall also use the space _ ([a,b],R ) of essentially boundedmeasur-

able functions into the space of n X n matrices with the norm defined

in the obvious way.

Suppose • is a given real number. Weallow • = -_ and

in this case the interval [_,_) denotes the interval (-_,_). Let

g and f be continuous functions from [_,_) X C into Rn such that

for each t c [_,_) the functions f(t,.) and g(t,.) are linear

operators and there exist positive continuous functions K and L

defined for all t a • such that

(i) Ig(t,$)l _- K(t)ll$11 and If(t,_)l _- L(t)ll_ll

I

I
I
I
I

I

I
I

I
I
I

I
I
I

for all qD c C and t c [x,_).

By the Riesz representation theorem there exists n × n matrix

I
I
I
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valued functions _ and q defined on [_,_) X [-r,O] such that

(2)

o

g(t,$) = I [de_(t,e)]q)(e)
-r

o

f(t,q)) = I [deq(t,e)]q)(e)
-r

for all _ e C. Moreover for each fixed t

q(t,.) are of bounded variation in [-r,O].

For any

as the element of

the restriction of

x c C([-r,A),Rn), A > O,

the functions _(t,') and

define xt, 0 g- t < A,

C given by xt(e ) = x(t + e); that is, xt is

x to the interval [t-r,t] shifted to [-r,O].

For any q0 e C and any _ in [_,_) define

q_(O)-g(q,q_). For any h, h c il([%v),R n) for every v

sider the following functional integral equation

(3)

a) x =

h)
t t

x(t) : _a,_)+g(t,xt)+f f(S,Xs)dS+I h(s)ds , t ¢ [_,m).

By a solution of (3) we shall mean an element of C([g-r,A),Rn),

< A _ m, that satisfies the relations in (3). We shall refer to

as the initial function and to G as the initial time.

If f and g are independent of t then (3) will be called

autonomous and otherwise non-autonomous. If h = 0 the equation (3)

will be called homogeneous and otherwise non-homogeneous.

I
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If g -- 0 then (3) is equivalent to the functional differential equa-

tion of retarded type

_(t) = f(t, xt) + h(t)

with initial function at t = _ given by _.

If f _ 0 and h _ 0 then equation (3) is a functional

difference equation of retarded type, and in particular, includes dif-

ference equations. For both f and g not identically zero, equation

(3) corresponds to a functional differential equation of neutral type.

Indeed, formal differentiation of the equation yields

(4) _(t) : g(t,_t) + f(t, xt) + h(t) ,

where f = _g/_t + f and xt is defined by kt(e) = k(t+e), -r & e & O.

Also, if one begins with (4) and defines a solution with initial func-

tion _ at s to be a continuous function satisfying (4) almost every-

where, then an integration yields (3) with _q,_) = _(O)-g(_,_).

Notice that all differential difference equations of neutral

type with variable coefficients and constant retardations can be written

in the form (3) provided the coefficients of the terms involving the

derivatives have an integrable first derivative.

Also, equation (3) contains as a special case some differential

difference equations of neutral type with variable lags provided that

the lags are bounded and satisfy some other reasonable conditions. For

I
I
I
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0<_
0

example, the equation _(t) : _(_(t)) + _(_t)) can be written in the

form (3) if 8, _ > O, y are continuous, _ is integrable and there is

a constant r _m O such that t-r -_ 8(t) _- t, t-r _- _t) _- t.

These last remarks are precisely the reason for considering

equation (3). It one attempts to discuss the equation (4) directly,

then the first problem encountered are precise definitions of a soiu-

tion and the topology to be used on the space in which the solutions

lie. To discuss (4) the topology must include information about the

derivatives of functions whereas (3) can be discussed in the simpler

space C.

Equation (3) would also include equations of advanced type

unless some further restriction is made on the function g. This is

due to the fact that the measure _(t,8) in (2) may have a jump at

@ = O equal to the identity for some values of t. To avoid this

difficulty, we shall assume that the measure _ is uniformly nonatomic

at zero. More precisely, we assume that there exists a nonnegative,

continuous, nondecreasing function 5 defined on [O,_o] for some

_- r such that

(5) s(o)= o _d
i 0
I [d_(t,e) ]_(e
-S

for all _ _ C, t _ [_,_) and all

be necessary to further restrict _.

Observe that the solution

tion _ at c satisfies

__s(s)tlmll[_s,o]

s c [0,_o]. In some cases it will

x(t,c,_) of (5) with initial func-

I
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(6) x(t,_,qO) : x(t,S,Xs(',q,q_)) t -_ s _-

provided all the above solutions exist and are uniquely defined by

initial values.

Also, at times it will be necessary to consider solutions of

(}) that are matrix valued. In this case we define the action of f

and g by (2) when $ is a continuous n X n matrix valued function

of the scalar O, 0 ¢ [-r,O].

I
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II. THE GENERAL LINEAR EQUATION.

This section deals with the general non-autonomous equation

I(3). Existence and uniqueness of solutions and variation of constants

formula are discussed.

THEOREM i. For any given q_ e C, _ ¢ [x,_) and h, where h e £1([a,v),R n)

for every v i__nn[s,_), there exists a unique function x(_,_) defined

and continuous on [o-r,_) that satisfies 1(3).

PROOF. Suppose K(t), L(t) are defined by I(1) and 5(s), s in

[O_go] is defined by I(5). Let 8 > _ be any fixed positive number

and let _ and _ be the supremum on [_,_] of K(t) and L(t),

respectively. Choose A > O so that 5(A)+LsA < 1 and o+A < 8,

A < go" Let P = [y e C([o-r,o+A],R n) : yo = _} , and for any y

in P, define

#qO(t-a) for q-r _- t _-

(ly)(t) = i t t

Y((_,q_)+g(t, yt)+_ f( s,Ys)dS+_ h( s)ds, < t _ _+A

Clearly IF C P. For any y and z in P

t

Jly(t)-Iz(t)J -_ Jg(t, Yt-Zt) j + I Jf(S, Ys-Zs)Jds

_-[5(A) + LsA]JJy-zJJ[q_r,e+A ]

i
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and so I is contracting in P. Thus, I has a unique fixed point in

P, which implies I(3) has a unique continuous solution defined on

[G-r,_+A]. But A is a constant independent of the norm of _ and

the solution can be extended to [q-r,8] by use of the above and

relation I(6). Since 8 was arbitrary the theorem is proved.

If the operators f and g do not increase too fast with

t we would expect that the solutions of I(3) are exponentially bounded.

Indeed one has

LEMM i. Suppose Ig(t,_)l _- _I@II an___dIf(t,_0)l__ _I_olI for all

qD c C and all t c [x,_) where K and L are constants. Then

there exist constants a, b and c such that for any q in [x,_)

t eC(t-¢_)Ilxt(_,_)ll _-c_ii_ii+ b I IhCs)lds_ t___.

PROOF. In this proof, we let xt designate xt(_,q0 ). Let M be such

that K+M > l, l_t_qD)l _- _lq011 for all t c [T_)_ q0 ¢ C, and let A

be a positive constant such that 1-5(A) > O. Define b = (1 -5(A)) -1

and a = (K+M)(1-5(A)) -1. For any t c [a,_+A] one has Ig(t, xt) I <

_I_II + 5(A)11xtll and so

t t

Ix(t)l _- (mK)il_ll + 5(A)llxtl I + L I Ilxsllds + I IhCs)d s, t _ _.

Since K+M > i and xa = $, the right-hand side is an upper bound for

I
I
I
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[IxtlI. Solving the resulting inequality for llxtlI and applying Gronwall's

inequality, we obtain

t ebL(t-G)
bIxtll<-(a11_I]+ b 41h(_)Ids} for t e [C,_+A].

We shall now show by an induction argument that the above

inequality is valid for all t _ _ provided bL is replaced by a

larger constant. Let c be so large that ae (bL-c)A _ 1 and c > bL.

Assume that

t

llxtll_- (_l$11+b _ lh(s)Ids]e c(t-_) for t e [_,_+kA].

From the above, this assumption is true if k = i. If t e [_+kA,_+(k+l)A]_

then the above estimate yields

t
bLA

llxtlI -_ [allxt_AlI + b I lh(s)Ids]e
t-A

and by the induction hypothesis

t-A t bLA
llxtlI _- (a[allqDIl+ b _ lh(s)Ids]eC(t-a-A)+ f lh(s)Ids}e

t-A

t

-_ [allqDll+ b I lh(s)Ids}e c(t-q) •

This completes the proof of the lemma.

I
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COROLLARY i. Let

initial function q0 at

For fixed tI and q,

C × _l([q, tl),R n) into

x(',_,_,h) b__eethe unique solution of I(3) with

and forcin5 function h c gl([s,t_,Rn).

x(tl, a,.,. ) is a continuous function from

Rn .

PROOF. The corollary is obvious from lemma i if f and g admit a

constant bound as required by the lemma. Since changing f and g

for t a t I does not effect the value of the solution in [q,t l] one

can define new f' and g' to be identical to f and g for

& t & tI and to equal f(tl,- ) and g(tl," ) for t _ t1. Applying

the above theorem to equation I(3) with f and g replaced by f'

and g' yields the result.

The next problem is to obtain a variation of constants formula

for the solutions of I(3). This is accomplished by observing Chat the

solutions of I(3) are linear operators on the forcing function h. In

particular we have:

THEOREM2. (Variation of Constants Formula). I__f x(c,$,h) is th___e

solution of I(3) with forcing function h, where h ¢ _l([_,v),Rn),

for all v _ s, and initial value _ in C at s, then

t

(i) x(_,q_,h)(t) = x(g,q0,O)(t) + f U(t,s)h(s)ds, t _- _,

wher____eU(t,s) is defined for • _- s _- t+r, U(t, ) ¢ _ ([_,t],R n2• )

each t, U(t,s) : + 8W(t,s)/Ss a.e., where W(t,s) is the uniciu_ee

fo__xr

I
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solution of

(2a) Ws(-,s) = 0

(2b)
o

W(t,s) = f [dep(t,e)]W(t+e,s )
-r

t o

+ f f [dsP(_,e)]W(e+_,s)d_-(t-s)I
S -r

for x _ s _ t.

PROOF. Let h e _l([S,t],R n) and let u(',s,h) be the solution of

I(3) that satisfies us = O. For fixed t and s it follows from

Corollary 1 that u(t,s,.) is a continuous linear operator from

£1([s,t],R n) into R n. So there exists (see [lO]) an n X n

n 2
matrix valued function U*(t,_,-)¢ _ ([s,t]3R )_ t _ s, such that

t

u(t,s,h) =

S

U*(t,_, e)h(e)de .

Let _ be in [s,t] and let k be any element of gl([S,t],R n) that

satisfies k(8) = 0 for e _ [s,a]. Then u(t,s,k) = u(t,_,k), t _a5,

and U*(t,s,e) = U*(t,a,e) a.e. Since _ is an arbitrary element of

[s3t] , it follows that U* is independent of s.

U*(t,s,e), t e [x,-), e e [x,t], U(t,e) = 0 for

t

any s in [T,_), let W(t,s)=-f U(t,e)de for

s

for

t__ s

t c [s-r3s ]. Clearly W satisfies (2a), (2b) and

stated in the theorem.

Define U(t,e) =

t _ e _ t+r. For

and W(t,s) = 0

U is given as

I
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J

COROLLARY 2. If f and g ar___eindependent of t the____n

(})
t

x(_,q0,h)(t) = x(e,_,O)(t) + f U(t-s)h(s)ds
o

n 2

where U i_ssdefined o_nn [-r,_), U _ g ([-r,t),R ), for each t in

[-r,_), U(t) = -dW(t)/dt _a.e. and W satisfies

(4a) W ° = 0

t

(4b) W(t) = g(Wt) + f f(Ws)dS + tI, t c [0,_).
o

I
I

I
I
I
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III. THE AUTONOMOUS, HOMOGENEOUS EQUATION.

In this section we study equation I(3) when f and g are

independent of t and h _ 0. Since, for the autonomous case it is

no restriction to choose the initial time _ = O, we consider

(1)
a) x =_

o

t

b) x(t) = _q0) + g(xt) + f f(xs)dS
o

for t -_ 0

with q0 _ C, _qD) = $(0) - g($) and

0 0

(2) g(_): f [d_(e)}_(e),f(_): I (dn(e)}_(e),
-r -r

where _ and q are functions of bounded variation in [-r,O].

The aim of this section is to study the behavior of the solu-

tions in C. By some general results from functional analysis we are

able to introduce coordinates in C in such a way that the behavior of

the solution of i) on certain finite dimensional subspaces are determined

by ordinary differential equations. An explicit characterization of

these subspaces is given that is amenable to computations.

If _ is any given function in C and x(_) is the unique

solution of (i) with initial function _ at zero then we define a

mapping T(t): C _ C, for each fixed t, by the relation

I
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(3) T(t)(p = xt(_p) .

The following lemma is an immediate consequence of the dis-

cussion in section II.

LEMMA i. The family [T(t)]t _ [O,_] forms a strongly continuous#

semi-group of bounded linear operators from C into itself for all

t__O.

Since T(t) is strongly continuous we may define the infin-

itesimal operator A of T(t) (see Hille and Phillips [ii],P.306) as

1
(4) A_ = lim _ [T(t)m-m]

t_O

whenever this limit exists in the norm topology of C. The infinitesimal

generator of T(t) is the smallest closed extension of A. By the

strong continuity of T(t) on [O,_) it follows that the infinitesimal

generator and infinitesimal operator are the same (see corollary,

p. 344 and Theorem 10.61, p. 322 of Hille and Phillips [ii]). From the

above remarks and Theorem 10.3.1 of Hille and Phillips, page 307, the

domain_(A) of A, isdensein C andtherange_(A) of A is

C. These remarks allow us to compute A directly from (4). In fact,

we have

LEMMA 2. Th__eeinfinitesimal generator A of the semi-group [T(t)]tc[O,_ )

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
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u_(A) given byand its domain ar__e

(7)
d

a) A_(e) = _-_(e) = +(e)

b) .,'(_,,,(A) = {q) E C : q) e C, _)(0) = g(6) + f(q))} •

Moreover, /J)(A) is dense in C an_d, fo___rq_ ¢_!(A),

d T(t)_ = T(t)A_= AT(t)q_.(6) d-Y

PROOF. Suppose qD is in _'(A). Since T(t)qD(e) = _(t+e) when

-r _- t+e g- O, it follows directly from the definition (4) that

(A_p)(e) = 6(e +) for e c [-r,O), where 6(e +) is the right-hand

derivative of qD at e.

Since lim t _eo+[T(t)_-_]/t exists for qD in ,:_(A), there

are constants _ and # such that IIT(t)m-mll _- et for t _ [O,G). Thus

Ix(t+e)-qO(@)l _- Bt for t c [0,_) and e _ [-r,O]. This implies

ftd_(8)( qD _ _ et)° ,
o (t+e)_p(e) + f d_(e) x(t+ -_(e)

1 I d_(e)[x(t+e)-$(e)) = t
t -r -r -t

0

tends to I d_(e)_(e+) as t -_0 + since

-r

I [Odl_(e)flt+e#'-q)(e)}-t _-5(t)_-_0, as t -_0 + •

From l(b), it follows immediately that

I



12-18

_Zm(o) : g(¢+) + f(_) •

Since _ must be in C it follows that dq0(e)/de exists and

is continuous. The rest of the lemma follows by Theorem 10.3.3 of Hille

and Phillips [ ll], page 308.

We shall now proceed to analyze the spectrum of _. Let B

be any linear operator of a Banach space _ into itself. The resolvent

set p(B) is defined as the set of k in the complex plane for which

(kI-B) has a bounded inverse in all of _. The complement of p(B)

in the X-plane is called the spectrum of B and is denoted by s(B).

The point spectrum, P_(B), consists of those k in _(B) for which

(kI-B) does not have an inverse. The points of I_(B) are called

eigenvalues of B and the nonzero _ E _ such that (kI-B)_ = 0 are

called eigenvectors of _. The null space _(B) of B is the set

of all _ ¢ _ for which B_ = O. For any given k E s(B) the generalized

eigenspace of k is defined to be the smallest closed subspace of

containing the subspaces _(kI-B)k_ k = 1,2,..., and will be denoted

One of our objects is to determine the nature of _(A) and

_(T(t)). We would hope to discuss most of the properties of T(t)

by using only properties of the known operator A.

I
I
I

I
I

I
I

I
I
I

I

I
I
I

THEOREM 1. Let A

k ¢ o'(A)

be defined as in Lemma 2, then g(A) = I_(A) and

if and only if k satisfies the characteristic equation

I

I

I

I
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o ke o_
(7) det Z_k) = O, £_k) : kI- I ke dp(O) -- I e dn(O ) .

-r -r

The roots of (7) hav___erea___!lparts bounded above and for an_y X _ o(A),

th__egeneralized eigenspace _k( A ) is finite dimensional. Finally

if k is a root of (7) of multiplicity k, the____n_k(A) = _(kI-A)k

and C = 3(A-kI) k _ _(A-kI) k, where _ is the direct sum.

Moreover T (t) is completely reduced b__ th__setw__olinear manifolds

_(A) an___d_k(A); tha____tis, T(t)%(A)C_k(A)j T(t)_k(A) C_k(A)

for all t a O.

PROOF. To prove that o(A) = P_(A), we show that the resolvent set

p(A) consists of all k except those that satisfy (7) and then show

that any k satisfying (7) is in I_(A). The constant _ will be in

O( A ) if and only if the equation

(8) (A-_)_ = ,

has a solution _ in 2(A) for all _ in C and the solution depends

continuously on _. Thus, we must have _(e) -- _(@) = _(e), e _ [-r,O];

that is_

(9) cp(e) = e:;kSb + feeX(e-_)1_(_)a_ , e ¢ [-r,O].
0

But, _ will be in 2(A) if and only if _(0) = g(_) + f(qD) and this

yields

I



12-20

(_o)

o

£_k)b = {-_/(0) + _ d_(8)[_ ISek(e-_)J/(_)d{] +

-r o

o

+ [ dq(e) /eeX(e-_)_({)d_] .
=r o

Thus, if det £{k) _ O, (9) and (lO) show that (8) has a solution for

any _ in C and the solution is a continuous linear operator on C.

This operator, called the resolvent operator, will be denoted by (A-kI) -I

and is given by

(ii) [(A-kI)-I$](8) = ekeb _'eek(8-_)_(+ _)d_ e • [-r,O]
o

where b is given by (i0) and det A(%) _ O. Hence p(A) D [%:det £{%)_0].

If det ZI(%) = O, then (9) and (iO) imply there exists a nonzero

solution of (8) for _ = O; that is, k is in P_( A ). This proves the

first part of the theorem.

As we have seen, if % is such that det t_k) = 0 and b is

such that £_k)b = O, then be k8 is an eigenvector of A and every

eigenvector is of this form. But then x(t) = ektb is a solution of (i)

and hence by Lemma II(1) the real parts of the roots of (7) are bounded

above.

For fixed k, any element of _(A-kI) k is of the form

7.k-I eie)dg(_, and since there are only a finite number of linearly
i=O z

independent vectors (_i the space _(A-_I) k is finite dimensional.

Since det _) is an entire function of _ is follows that

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
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I (A-kl) -I is a meromorphic function with poles only at the zeros of

I
I

I

det 2_k). Thus we can apply Theorem 5.8-A of Taylor [ 12] to conclude

that if k is a zero of order k > 0 of det 2<_) then

C = _(A-kI) k _ _(A-kI) k. Furthermore, since A and T(t) commute

for all t a 0 it follows that T(t) is completely reduced by the

two linear manifolds _(A-kI) k and _(A-kI) k. Thus the theorem

I

I

I that A¢ k = CkBk

I
I

I
I

is proved.

Now let us consider these spaces in more detail. Let

k k be a basis for _k(A) = _(A-kI) k and let Ck (_lk_''"_d k)_i' """'qDd = "

Since AUk (A) _ _k (A), there exists a d X d matrix B k such

and the only eigenvalue of Bk is k. From the

definition of A and the relation A$k = CkBk it follows that

BX@

Ck(e) = Ck(O)e From this fact and (6), one obtains

(12)

Bxt
T(t)¢k= @ke , t c [0,_),

Bk(t+e)

[ T(t)¢%](e) = $%(O)e , e E [-r,O), t g [O,m).

I

I

This relation permits one to define T (t) on _k(A) for all values

of t _ (-_,_), and so on a generalized eigenspace the equation (1) has

the same structure as an ordinary differential equation. By repeated

I application of the same process one obtains

I COROLLARY i. Suppose A is a finit__e se_t [%l,...,kp} of eigenvalues

I

I
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of (i) an___dlet @A= (¢kl,...,¢kp), BA= diag(B%l,...,Bkp), where ¢

and is a basis for _)_ki(A) an___dBki is th___ematrix defined bi

A Cki = CkiBki , i = 1,2,...,p. Then the only eigenvalue of B k is

k.
1

and for any vector a of th____e9ame dimension as ¢A' the solution

T (t)¢a with initial value ¢Aa at t = 0 ma___yb__edefi____nedon (-_,_)

by the relation

(13)
BAt BAe

T (t)$Aa = CA e a , <I)A(8 ) = CA(O)e , o c [-r,o] .

I

I

I

I

I

I
Furthermore there exists a subspace

for all t _-0 and

(14) c _- PA _9 Qn,

QA of C such that T (t)QA_ QA I

PA = {_ ¢ C: _ = ¢A a , for some fixed vector a}.

I

I
This corollary gives a very clear picture of the behavior of

the solutions of (i). In fact on the generalized eigenspaces the system

behaves much like an ordinary differential equation. The above decomposi-

tion of C allows one to introduce a coordinate system in C which

plays the same role as the Jordan canonical form in ordinary differential

I

I

I
equations.

Before obtaining estimates for T(t) on the complementary sub-
I

space QA' we give an explicit characterization for QA" This could be

obtained from the general theory of linear operators, by means of a

contour integral, but we prefer to give this representation in terms

I

I

I

I
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of an operator "adjoint" to A relative to a certain bilinear form.

This method leads to ease in computations and also provides a language

more familiar to differential equationists. Let C* = C([O,r],R n*)

where Rn* is the n-dimensional linear vector space of row vectors.

For any _ in C, define

(15) o a f_oc( o e
(G,_) = G(o)_(o) -r [d-q" s-Odr,(e)_(s)ds]_= e- f f G(s-e)d,l(e)_(s)ds

-r o -r o

for all those G in C* for which this expression is meaningful. In

particular, (G3@) will have meaning if G is continuously differentiable.

The motivation for this bilinear form is not easy to understand, but

it was first encountered in the proof of Theorem 1. In fact, equations

(8), (9), (IO) show that (A-%I)_ = _ has a solution if and only if

(ae-k'I,@) = O for all row vectors a for which a_k) = O.

Without further ado, we use this bilinear form to try to

determine an operator A* with domain dense in C* such that

(16) (cz,A_) = (A*_,9), for 9 in _(A), _ in _(A*).

If we suppose _ has a continuous first derivative and

perform the standard type of calculations using an integration by

parts, one shows that (16) is satisfied if A* and the domain _(A*)

of A* are defined by

(17a) (A*cz)(s) = -dcz(s)/ds , 0 _ s _- r

I
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(17b)

0 0

-a(o) : -I_(-O)d_(O) + I a(-O)dn(O)} .
-r -r

Hereafter, we will take (17) as the defining relation for A* and

refer to A* as the adjoint of A relative to the bilinear form (15).

For any G in C*, consider the equation

(18a) y(s) : G(s) , 0 _- s _- r,

O O S O

(18b) y(s) : _(0) - f _(-e)d_(e) + f y(s-e)d_(e) - f If y(u-e)d_(e)]du,
-r -r o -r

S __0.

If we let yS be the element of C* defined by yS(v) = y(s+v), 0 _- v __ r

and designate the solution of (18) by y(_), then the family of operators

T*(s), s _- O, defined by yS(c_) = T*(s)O_ s _- 0, is a strongly continuous

semigroup for which (-A*) is the infinitesimal generator. We shall

refer to (18) as the equation adjoint to (i).

Observe that G in o_(A*) implies that the solution y(G)

of (18) on (-=,r] is continuously differentiable and

O O

(19) _(s) = f _(s-e)d_(e) - f y(s-e)dn(e)
-r -r

for s _-O.

LEMMA 3. >uppose y(G), G ¢2(A*), is the solution of (18) o_nn (-_,r]

I

I

I

I

I

I

I

I

I

I
I

I

I
I

I
I

I
I
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I and x(_) is the solution of the nonhomogeneous equation

I

I

I

I

(20a) x =

t t

(2Ob) x(t) = _) + g(xt) + I f(xs)dS + I h(s)ds, t -_ a.

Then for any v _ _,

t

(21) (?-V(G),Xt(_)) = (Y_-W(G),$) + I y(s-v)h(s)ds, a _- t _- v.

I PROOF: For simplicity in notation, let zt = ?-v(_), t _- w, xt =

xt(_) , t _- O. Since (_ is in _(A*), z(t) is continuously different-

I
I

I
I

able and satisfies (19) for t _ w. From the definition (15) and the

fact that x(_) satisfies (20), one shows very easily that, for 0 _ t S w,

t t

(zt, xt ) = z(t)[_qD) + I f(xs)dS + I h(s)ds] +

o t+e o t+e

+ I I _(u-e)d_(e)x(u)du-I I z(u-e)d_(e)x(u)du.
-r t -r t

I

I

Consequently, (zt, xt ) is differentiable in t and a simple calculation

yields d(zt,xt)/dt = z(t)h(t), 0 _- t _- v. Integrating this expression

from o to v yields the formula (21) which proves Lemma 3.

I

I
LEMMA 4. k is in s(A) if and only if k is in a(A*). Th___ee

operator A* has only point spectrum and for any k in _(A*),

I

I
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the generalized eigenspace of k is finite dimensional.

PROOF: The last part of the lemma is proved exactly as in Lemma 2

and the first part follows from the observation that k is in q(A*)

kebif and only if G(e) = e- where b is a nonzero row vector

satisfying b2_k) = 0.

LEMMA _. A necessary and sufficient condition for the equation

(22) (A-kI)k_ =

to have a solution q_ in C, o_r, equivalently, that _ is in

_(A-kI) k is that (G,_) = 0 for all _ in _(A*-%I) k. Also,

dim _A-kI) k = dim _(A*-kI) k for ever_ k.

PROOF: First, we introduce some notation. With the matrix 2_k)

given in (7), we define the matrices Pj as

(23) Pj+I = Pj+I (k) = A(J)(k) , A(J)(k) - dJA(k) , j = 0,1,2,...,k
j ' dkJ

and the matrices Ak of dimension kn × kn as

(24) Ak =

PI P2 """

0 P1 "'"

0 0 ...

D

Pk

Pk-1

I
I
I
I

I
I

I
I

I
I
I

I
I

I

I
I
I
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Let us also define functions _j by

(25) (s) t_,_s/k-J
-ks

Bj = e _ 0 _- s __ r _ j = 1,2,...,k .
(k-j)'

If (22) is to have a solution, then necessarily (_-_ -

-r _- e _-0, or

_(e) =
k-i e

Zj=Orj+lSk_j(-O) + ./" 81(_-el,C_ld_ ,
0

where the rj+l are arbitrary n-dimensional column vectors which must

be determined so that _ belongs to _(A-kI) k. We now derive these

conditions on the yj.

A simple induction argument on m shows that

@(m)(_.def,d_) = t_-x)m_(e) =
k-m-i e

7 Tm+j+lSk_j (_e) + f 8m+l(_-e)_(_)d_
j=O o

for 0 _- m _- k-l.

Next, observe that $ belongs to ,_(A-kI) k if and only if

$(m) belongs to _(A-%I), m = O, 1,...,k-1. Since a continuously

differentiable $ belongs to _(A) if and only if @(0) = g(6)+f(_),

it follows from the definition of the function @(m) and the matrices

Pj that q0(m)• , m < k-l, belongs to _(A) if and only if

P1rm+l + P2T'm+2 + ... +Pk_mT'k = -(_m+lIn,_)

I
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where I is the n X n identity matrix and ( , )
n

form defined in (15). Since _(k-l)(o) = klCk+_(O),

q_(k-l) belongs to _'(A) if and only if

is the bilinear

it follows that

PIYk = - (SkIn,_) •

If we introduce the additional notation y : col(T1,...,yk) ,

B = diag(81In,...,SnIn) , then equation (22) has a solution if and only

if r satisfies the equation AkY = -(B,_). But this equation has a

solution if and only if b(B,_) = (bB,$) = 0 for all row vectors b

satisfying bA k = 0. On the other hand, calculations very similar

to the ones above show that a function G in C* belongs to _(A*-kI) k

if and only if G = bB for some b satisfying bA k = O. It is clear

from the above that dim_(A-kI) k = dim _(A*-%I) k for every k and

this completes the proof of the lemma.

In the proof of the above lemma, we have actually characterized

_(A-%I) k, _(A*-kI) k in a manner which is convenient for computations.

In fact,

(26a)

(26b)

k-1

_(A-kI) _ = [_ ¢ C: _(8) = a4_=or_+lSk-j(-e)' -r _- e o,

AkY = O, _ = col(Yl,...,yk )]'

k

_(A*-kI) k = (_ g C*: _(s) = _j__lSjSj(s), 0 _- s _- r

_k = O, 8 = row(Bl,... ,Sk)],

I
I
I

I
I
I

I

I
I
I

I
I
i

I

I
I
I

I
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!

!

where Ak, _j, j = 1,2,...,k, are defined by (23),(24),(25).

An important implication of the preceding lemma is

!

!

!

THEOREM 2. For k in q(A), le___t_k = c°l(_l'''"_p)' Ck = (qDl'''"_p)

be bases for _k(A), _k(A*), respectively, and let (Wk,¢%) = (_i,_j),

i,j = 1,2,...,p. Then (_k,¢%) is nonsingular and maY be__taken..___to be

the identity. Th__edecomposition of C given b_ Lena 2 may b__eewritten

explicitly as

!

!
C = Pk _ Qk

QX : [_ c c: (_x,_) : o]

I PROOF: If k is the smallest integer for which _%(A)= _A-kI) k

then Lemma 5 implies that _(A-kI) k

I = Qk" If there is a p-vector a

such that O = (_k,¢k)a = (_k,¢ka), then Cka belongs to both

l _(A-kI) k and _(A-%I) k which implies by Lemma 3 that ¢%a = 0 and,

thus, a = O. Consequently, (_k,¢k) is nonsingular and a change of

I the basis _k will result in the identity matrix for (_k,¢k). The

l remaining statements in the lemma are obvious.

It is interesting to note that (Wk,¢k) = I and A*_k = B_%,

I A¢ k = CkB% implies B_ = B k. In fact,

!

!

!
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The following lemma is also convenient.

LEMMA 6. If k _ _, k, _ ¢ _(A), then (_,q_) = 0 for all _ in

_pJ_CA*), q_ E 9_k(A ).

The proof of this is not difficult but tedious and my be

supplied as in [5].

If A= [kl,...,Ap] is a finite set of characteristic values

of (i); that is, Aj¢ _(A), we let PA be the ligear extension of the

_]_zj(A), A.E3 A and refer to this set as the generalized eigenspace of

(i) associated with Ik In a similar manner we define P_=

_kl(A*) _..._)_kp(A*) as the generalized eigenspace of the adjoint

equation (18) associated with _ If 96'_A are bases for PA, I_A,

respectively, (_,_A).= I, then

C = PA 6_) QA

(27) PA = [(p c C: (p = CAb for some vector b]

QA = [_ _ C: (_A,_)= 0}

and, therefore, for any @ in C

I
I
I

!
I
I

I

I
I
I

I
I

I
I

I
I
!

!
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(28)

= _PA G AQA

PA

When this particular decomposition of C is used, we shall briefly

express this by saying that C is decomposed by

Our next objective is to perform the above decomposition on

the variation of constants formula for the solution of (20). From

Corollary II.2, we know that the solution of (20) can be written as

t+e

x(t+0,_,_,h) = x(t+O,_,_,0) + f U(t+O-s)h(s)ds

t+e

= x(t+O,_,q),O) + f [dsW(t+O-s)]h(s), t+e z _.

If we use our notation x(t+e,_,_,0) = x(t+e-_,0,e,o) = [T(t-_)_](e)

and the fact that W ° = 0, then

t

xt(s,_,h)(e ) = [T(t-_)_](e) + I [dsWt_s(B)]h(s), -r _- e _ 0.

For simplicity we suppress the explicit dependence on e and write

this as

(29)

t

xt(_,q),h ) = T(t-(_)_ + _ [dsWt_s]h(s)

t

= T(t-_)q) + ] Ut_sh(S)ds
a

I
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where Ut

values of (1) and C is decomposed by A as in formulas

For simplitity in notation, let ¢ = CA' _ = _A and let

matrix defined by A¢ = CB. We have remarked before that

is defined in the obvious way.

Now, suppose that A is a finite set of characteristic

(27),(28).

B be the

(T,¢) = I

implies that A*$ = BY. Consequently, the matrix e-Bt_(o) is a

solution of the adjoint equation (18) on (_=m). If we let

PA QA

xt = xt(o,_,h ) = xt + xt and apply Lemma 3, it therefore follows

that

(30)

PA def ceBt(e-Bt_,xt )Xt = ¢(_,xt) =

= $eBt[(e'B_,_) + fte-BS_(o)h(s)ds]

: T(t-d)¢(_,qD) + ftCeB(t's)_(O)h(s)ds

t t-s B

= T(t-d)CP P + I [ds(-I Ce U_(o))]h(s)
o o

If W t = W tP + W_ , WtP = ¢(Y, Wt) , t _- 0, then by the same type

of argument as above making use of Lemma 3 and the fact that W satisfies

11(4), we obtain

W_ d_f _(_,Wt ) =
t eB(t_s)_(O)ds t B=- f Ce U_(O)du •

o o

Using this fact, equation (29),(30) and the formulas x% = xt-xtP ,

I

I
I
I
I
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_Q = _pP, we have

t

(31a) xP(s,_,h) = T(t-_)_ P + f [dsWtP_s]h(s) ,

t

(31b) xQ(_,_,h) = T(t-_)_ Q + f [dsWQ_s]h(s ) , t _- O.

D

From formula (29), it is obvious that if xt(s,_,h) =

_y(t), then y(t) satisfies the ordinary differential equation

(32) _(t) = BAY(t ) + _(0)h(t) , t _m O.

THEOREM3. If A is a finite set of characteristic values of (i)

and C is decomposed by A as in (27),(28), then the solution

x(_,_,h) of. (201 satisfies (31). Furthermore, if x_(_,_,h) =

CAY(t), then y(t) satisfies (32).

We now give an example to clarify the concepts discussed

in this section. An easier illustration could be given by consider-

ing only a retarded equation, but the example to be given will be

used later for other applications of the theory. Consider the

homogeneous scalar equation

(33) _(t) = Go_(t-r) - _x(t) - GoYX(t-r )

where r > O, Go, _, Y are constants and the associated nonhomogeneous

I
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equation

(34) _(t) = Go_(t-r ) - px(t) - GoTX(t-r) + h

where h is some given function. For simplicity in notation, we

are writing these equations in differential form, but it is always

understood that solutions are defined by specifying a continuous

initial function on an interval [_-r,_] and solving the integrated

form of the equation for x on t _ o.

The characteristic equation for (33) is

(35) k - Coke -kr + 6 + Go_e -kr : 0

and the associated bilinear form is

(36)

O O

(_/P) = _/(0)q)(0)-G o_(0)(p(-r)-GoI i(@+r)(p(e)de-G °ff_/(e+r)(p(e)de.
-r -r

Equation (34) was encountered by Brayton [13] in the study

of transmission lines and he showed that for y > p > 0 there are

an infinite set of real pairs (Go,_o), _ > O, G2 < i, such that
O O

_+ i_° are simple roots of (35) and _o, Go are related by the formulas

tD
o r+P

(37) sin (nor = _-" 2--_ '

o _o+r

2
i _o "_IB

cos _o r = G --_
o _o+r

I
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Let us assume that G is such a real number and compute the de-
O

composition of C assording to the set A = [ + i_o, - i_o).

If ¢ = (_1,_2), _l(e) = sin _o e, _2(e) = cos _o 8,

-r _ e _ o, then ¢ is a basis for the generalized eigenspace

of (33) associated with A since we are assuming these eigenvalues

are simple. Furthermore, A¢ = ¢B implies

(38) B = (bij) , bll -- b22 -- O, bl2 =-_o ---b21"

The equation adjoint to (33) is

(39) _(t) = C_o_(t+r )+_t)+GoTY(t+r)

and _* -- oo_(_,_), _(e) -- sin Woe,_(e) = oos_oe, o _-e __r

is a basis for the generalized eigenspace of (39) associated with

After some straightforward but tedious calculations using

(37) one obtains

(_,_l) = (_,_2) -- 1 [ K r+_) +r_( Y2 +(Oo)]2

(Do 22

(,_,(pl) =-(_'_,Cp2 ) = 2(2+2)a_olf [ y+_+r(T-+d_o)] .

If we now define • = (Y*,¢)'_*, then (Y,¢) = I, the identity

I
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and we are in a position to make our decomposition of C by 1k

Our main interest lies in formulas (31),(32) and in particular

(31b) and (32). Consequently, we only need _(0) which is easily

calculated from the above formulas and found to be

• (o) = coi [c2DD2 c,c-_+ I

1
(4o) c =

D

CO
0

[ T(y+_) +r_(1C2_O2o) ]

2 2
[ y+{B+r( y -WOo)] .

system

Finally, equation (34) is equivalent to the following

xt = Cy(t) + xQ

(41) _(t) : By(t) + _(O)h

t

xtQ = T(t-(_)q)Q + f [dsWt_s]h , t _-

where _(O) is given in (40) and B is defined in (38).
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IV. THE CHARACTERISTIC EQUATION AND EXPONENTIAL BOUNDS.

In this section the zeros of the characteristic equation

are discussed and estimates are obtained for the growth of the solu-

tions on the compliment of the generalized eigenspaces.

In order to analyze the characteristic equation it is neces-

sary to further restrict the functional g or equivalently the measure

_. It is known [ 10] that every function of bounded variation can be

decomposed into three summands l) a saltus function (essentially a

step function with a countable number of discontinuities) 2) an absolute-

ly continuous function and 3) a "singular function" that is a continuous

function of bounded variation whose derivative is zero almost every-

where. We shall assume that the measure _ is without singular part.

Specifically, assume that

O

(1) g(qD) = _ Akq_(-_k) + I A(e)qD(@)de , q_ ¢ C([-r,O],R n)
k=l -r

where the Ak are n X n constant matrices with _A_ absolutely
1

convergent, the _k are a countable sequence of real numbers with

n2

0 < _k & r for all k and A(@) e £1([-r,O],R ).

Under the above assumption Z_k) has the form

(2)

where

(3)

_) = _[Hl(X)+ H2(_)}+ _3(_)

0O

a) _l (_) = I - Z _e-% _

o

b) H2(x)---I a(O)e_OaO
-r
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o

C) H3(k) = - I eked_(8) •
-r

Moreover det _k) : knhl(k)+ h2(k)

and h2(k)= det _k) - knhl(k)

where
hl(k) = det Hl(k )

For any pair of real numbers G,6 (G _- 6) let [_,6] =

= [k: G _- Re k _- 6]. In any [G,6] the elements of H3(k ) are

bounded and the elements of H2(k ) tend uniformly to zero as Ikl -_ _.

Thush2(k):o(_n) as Ikl_- in [G,6].

LEMMA i. If [_] is a sequence of zeros of h I i__nn[G ÷ 5,6-5],

5 > 0, with Iknl _, then there exists a sequence [_] of zeros

o__fdet Z_k) i__nn[G,6] with the property that I_-_I s0, a__sk _.

LEMMA 2. Le___ta be a real number such that only a finite number of

zeros of det £_k) have real part greater than a-_ for some e > O.

1

Then there exists an a* and a K > 0 such that a- _ _- a* _- a an__dd

II_ a*+i_)-_l g- K/(l+_ _[ ) for _ real.

PROOFS. The function hi(k ) is an analytic almost periodic function

for all k. Then by a theorem in [14], page 351 there exists a

number N such that the number of zeros of hl(k ) in the box

_(G + 5,_-5,t*) = {k: G + 5 _ Rek _ 6-5, t*-ll2 _ Im k & t* + 112] _

does not exceed N for any real t*. Moreover for each r > 0 there

exists an m(r) > 0 such that for all k in [G,6] at a distance

greater than r from a zero of hl(k) the inequality lhl(k)l _ re(r)

holds.
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Thus Lemma i follows by applying Rouch$'s Theorem.

Now let a be as in Lemma 2. Since h(k) has only finitely

many zeros with real part greater than a-g for some 8 > 0 it

follows from Lemma i that hl(k)

real part greater than a-8/2.

a-8/2 < a* _- a, and a K2 >0 such that lhl(k)} _- K2

k = a* + il, l, real. Thus lh(a* + il)-iI = 0(l -n) as

has only finitely many zeros with

Therefore there exists an a*_

for all

Ill -_,

l real.

Since _X)-I = (h(x)-l)adj _) and lladj_(a* + i_)lI = O(l n-l)

as Ill -_ _, _ real, Lemma 2 follows.

With the aid of Lemma 2 one can now estimate the growth of

the solutions on the space QA" Let A be a finite set of eigenvalues

of A with the property that all other eigenvalues of A have real

part less that a-g for a fixed real number a and some 8 > 0.

Let u('3_h ) be the solution of the nonhomogeneous equstion that

satisfies uo = 0, i.e., the solution given by the integral in the

Corollary i of Section III. Let u_ be the projection of ut on the

u(t) Q = ut(O ).

C I

space QA and

Let

from g-r,0] inLo

denote the set of continuously differentiable function

Rn with the norm llqDIIi= sup [IQp(e)l+l_(e)l}.

e_[ -r,O]

CI.THEOREM i. Let _ _ Then there exist constants M an_dd N s__ tha____t

I
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IIT (t)$_l _- Meat II$IIi

t i/2
llut_l _-N [I lea(t-_)h(_)12d _]

q

PROOF: In the proof of this theorem the fact that the formulas

o@ G@

g(x) = i I e-iXyf(y)dy ; f(x) = i____ _ eiXyg(y)dy
4-_--_ ,_--_

define a unitary transformation of the space L2(-_,_ ) and its in-

verse will be used several times (see [10]). In the formulas f =

By standard Laplace transform methods

(6)
t

u(t)Q = _ ekt2_k)-l[_ e-k_h(_)d_}d%

C 0

a*+iT

where f = lim f and a* is in Lemma 2. Now (6) can

c T_ _ a*-iT

be written

(7) u(t)Q = i _ el_t2_a*+i_)-l[_ e-l_ [ea(t-x)h(x)dxB]d_ '

__ 0

T

lim

T _ -T

I

I

I
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Z2 -4l

The function in the braces is an L2

Z_(a*+i_) -I is an L2 function of

inequality yield s

function of _ for each t and

by Lemma 2. Applying Schwartz_s

t 1/2
lu(t)Qi g-Ml[f lea*(t-_)h(_)12d_}

0

from which the inequality (5) follows at once.

Let _ e _(A). Then

(8) T(t)@Q = _ ekt[_k)-l[-_(O) + ]°dw(e)(_--_ ]eek(e-d_)qD(cz)d(_)

c -r o

+ _°d_(e) leek(e-a)@(_)d_} + leek(e-G)@(_)d_]dk

-r o o

by [ll].

The term containing feek(e-G)_(_)dG contributes nothing

o

since it is an entire function of k and the contour can be Shifted to

O

I d_(e)(_e/eeXCe-_)_(_))do --
-r o

o o e

= (I d_(Slek8}_(O) + I d_(8)l dk(8-_)¢(_)d_ .

-r -r 0

From the matrix identity tkB + C}-_ =k-l[I-(kB+C)'_]

one obtains
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0

ekt2<k)-l[-I + f d_(e)ekS]@(O) =

C -r

kt o

{_f e Xt 2_k) -I--_-°dX + f e k [f d_(e)ekO]dk]_(O)"
C C -r

The first integral is integrable and is known to admit an estimate of

the form

Xt

If _- dkl _- _2 ea*t
C

The second integral is absolutely convergent since

like k-2 on c, and thus

x-l_x)-i is

If ekt z_(x)---1 [f°dn(e)eXe]dXl _ ea*tM 3_, -- .
C -r

For k = a*+i_, we have

o eeX(e__)¢(_)d _ -rf d_(e) f = f dB f dtz(e)[ellB¢(e_#)]
-r o o -r

-r .

= f e_[ ea_ f dpt(O)¢(O-IB)'ld_ .

0 -r

I

I
I
l
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As a function of

whose norm can be estimated by

we obtain

the above is an element of L2(-%_)

M_II_I_. By applying Schwartz's inequality

I ] ekt£_ k)- 1[ [°d_ (e) leek( e.G)q_(G)dG] i __ M5 ea*tll(pll 1.
C -r o

In the same way as the above

If ekt2<k)-l[[°dh(e)Ieek(e-a)_(_)d_ I] -_ M_ea*tllmll
c -r o

Thus the estimate (4) is obtained for all _ ¢#9(A). The

estimate (4) remains true for all continuously differentiable _ since

_(A) is dense in C1.

COROLLARY i. If g -- 0 in lll(1)b) then

lIT (t)_lt _- Meatll_ll for all _ E C .
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V. APPLICATIONS: STABILITY AND INTEGRAL MANIFOLDS.

In this section two applications are given to illustrate

how the previously developed theory of linear equations can be used

to study weakly nonlinear systems. It is hoped that this section

will indicate the possibility of further extensions and applications.

The first application is the analogue of a well known stability theorem

by first approximation for ordinary differential equations. The second

is an extension of the method of integral manifolds to this new

class of equations. •

The general outline of the proofs given below is the same

as in the case of ordinary differential equations, but certain

technical details are markedly different.

V.1. Stability

Our proof of the stability theorem is modeled on the

standard proof using Gronwall's inequality (see [l_] and [16]).

For this we need the following:

LEMMA i. There exists a constant K > 0 independent of _,_ > O, such

that any function u that is continuous for all t _ 0 and satisfies

t

u(t) _- _ + _{f u(s)2ds} I/2

O

for t _ 0

also satisfies the inequality u(t) _ GK exp _2t/2.

I
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PROOF. Note that there is no loss in generality by taking G = i.

Consider the continuous linear operator I from C([0,E],R) into

itself for each E > 0 defined by

t

(Iu)(t) = 1 + G[f u(s)2ds} 1/2

O

I

Observe that I has the following property: if u(t) _ v(t) for

t c [0,E], E _ 0, then (Iu)(t) _ (Iv)(t) for t ¢ [0,El. Hence

by [ 1 ], p. 61, it follows that any function w continuous for

t _ 0 will dominate functions satisfying (1) if (Iw)(t) > w(t)

for t _ 0. That is if w satisfies (Iw)(t) > w(t) for all

t _ 0 and u(t) satisfies (1) then u(t) _ w(t) for t _ 0.

Observe that if v satisfies Iv = v; (Iv)(t) = v(t),

t _ 0; then w = Bv, B > 1 satisfies (Iw)(t) > w(t) for t _ 0.

Hence we must only analyze the equation Iv = v.

By a simple application of the contracting mapping

principle one finds that I has a fixed point in C([0,E],R)

for E sufficiently small. Denote this fixed point by u and

then u satisfies the differential equation

!
_2 u2 _2 1

I (2) _=--_ [ _-_-_ ] -- _-_u [ _ } for

O<t<E.

I

I

I

Clearly u can be shown to exist for t _ E and hence for t _ 0.

Moreover it is clear from (2) that u admits an estimate of the

form u(t) _ K exp (#2t/2).

I
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Now consider the equation

(_)
t t

xCt) = _$) + gCx t) + f fCxs)dS + f FCS,Xs)dS

x =_ , q_ c C.

where F is a continuous mapping from [_,_) X SE

sE = (__ c:il_ll< E] andalso • _ _. AlsoassumeF

in the second argument on all of [_,_) X SE and let

o(Jl_JJ) uniformly in t as lJ_JJ_ O.

Furthermore let g be such that the estimates of section

IV apply and let A be the infinitesimal generator of the semigroup

into Rn where

is Lipschitzian

JF(t,$) J --

generated by (3) with F _ O.

THEOREM i. Let all the eigenvalues of A have real parts less than

-a < O, let _ ¢ cl([-r,O],Rn),and let x(_) be the solution of

(3) with x (qD) = _. Then fo___rran___yyg > O, 0 < _ < a, there exists

_ pair of constants p an___dL such that

(4) JJxt(_)Jj m i_l@jJle-(a-g)(t-O)_ _t___

provided JJ$1J1 __ P.
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REMARK. Existence and uniqueness of a solution to equation (3) can

be established in a manner similar to that found in section II. The

present problem is slightly more complicated since the application

of the contracting mapping principle gives the existence of solutions

over an interval whose length depends on the norm of the initial

condition. This difficulty can be overcome by using a continuation

argument as in ordinary differential equations. Indeed it can be

shown that a solution of (3) can be extended either for all t _ 0

or until it reaches the boundary of SE.

PROOF. Let x be the solution of (3) corresponding to the con-

tinuously differentiable inital function _ ¢ SE. As long as x(_)

satisfies (3) then

t

(_) x(t) = T(t)_ + f [dsW(t-s)]F(S, Xs)
G

From the results of section IV there exist constants M and N

such that

(6) IIxtll _-M(Ilq)IIi) e-a( t-a )+ N[ fte-2a(t-s)i F(S,Xs)12as}i/2

and since

IF(s,_)l_-_-l_2ell_II

l_(s,_)I- o(ll_II)wecan choose a p > 0 such that

for all IIqDIl< p and so

ea(t-_)IIxtiI-_MII_II1+j_ (ft[ea(s__)llxsli]2dsZ_i/2

I
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and so by Lemma i

le- (a-_)(t-a)

t 2 s provided p

implies that the solution does not leave

ea(t-g)llxtl I -_ K_l_Ille _(t-_) or llxtlI _-

for t _- Oo The last estimate holds for all

is sufficiently small since the above estimate

SE •

V.2o Averaging and integral manifolds.

In this section, we shall show how the results of the

previous pages together with generalizations of well known pertur-

bational methods of ordinary differential equations can be used to

discuss the existence and stability of periodic solutions and

integral manifolds of perturbed linear systems where the nonlinear

term is of a special type. The hypotheses are unnecessarily

restrictive and the presentation is given in this way for simplicity

only. Generalizations will be obvious to the reader acquainted with

the theory of oscillations for ordinary differential equations.

Consider the linear system

(7)

a) x = _ where _ ¢ C ,

t

b) x(t) : _,g)+g(xt,g)+ I f(x ,g)dx , t _- a

where _ _ 0 is a parameter, _,_) = _(O)-g(@,_), g($,g), f(_,g)

are linear in _ and continuous in $, for all _ in C,

I
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0 _ _ _ g with the continuity in $ being uniform in g. Further-
O

more, suppose g($,8) has the nonatomic property 1(5) uniformly

in g. The characteristic equation of (7) is

(8)
det 2_k,g) = 0

2_k,e) = %[I-g(ek',_)] - f(ek',_).

We shall always assume that equation (8) has two simple roots

By(g) _ i_(_), _g) = _o + _l (g)' _o > O, v(_), _g) continuous

in _, 0 _ g _ go' and the remaining roots have real parts _ -5 < O.

Notice that for g = O, this hypothesis implies that (7) has a two

parameter family of periodic solutions of period 2_/_ ° to which

all other solutions (with smooth enough initial data) approach as

t _. For g > O, there is a two parameter family of solutions

[corresponding to the characteristic roots gv(g) ± i_g)] which

are exponentially stable.

for the solutions in C

and _ = col (_/i_,_2_)

We shall let ¢_ = (_l_,qD2_) be a basis

generated by the roots A = {_v(g) + i_(g)}

a corresponding basis for the solutions of

the adjoint equation, (_8,¢g) = I.

Suppose F: R X C _ Rn is continuous and F(t,$), t _ R,

c C has continuous second derivatives with respect to $ and

consider the nonlinear equation

(9)
a) x(t) = q_(t-o), o-r _- t -_ o,

t t

b) x(t) = T((p,_)+g(xt,g)+ f f(xx,_)dx + g f F(x,xx)dv,t __ 0.
0 0

I
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Notice that formal differentiation of this equation with respect

to t yields

(_o) _(t) = g(_t,8) + f(xt,8) + _F(t,xt);

that is, an equation of neutral type where the nonlinearity does

not involve the derivative of x. An equation of this type with

F(t,_) independent of t was encountered by Miranker [17] and

Brayton [13] in the theory of transmission lines. Similar

equations have also been studied by Marchenko and Rubanik [18] in

connection with some mechanical vibration problems.

If the space C is decomposed by A = [_v(_) ± i_(_)],

then the theory of section 3 shows that system (3) is equivalent

to the system

(ii)

a) xt = $8y(t)+ xtQ , y(t) = (_8,xt)

b) _(t) = B8y(t)_e(O)F(t,¢8y(t)+xQ ) ,

t

c) xQ = T8(t-(_)xQ_ _ [dsWQ,t_s]F(s,¢8y(s)+xQ)ds, t a _,
c

where the eigenvalues of B_ are [_v(8) _ i(o(_)];B_ is determined

by $_(e) = _8(O)expB_8, -r _- 8 _- O, T_(t), t _- 0 designates the

semigroup of transformations associated with (7) and W_, t is the

kernel function associated with the variation of constants formula

II(3); that is, W_(t) satisfies II(4) for 0 _- _ _-go" The
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z2-5z

matrix B_ can actually be chosen as

B_

The above hypotheses on the characteristic equation (8)

and the estimates of section 4 imply that there are positive constants

K,c such that

(12)

t

a) I/a[dsWQ,t_s]h(s)ds I _- K(/t(e -c(t-s) lh(s)l)2)I/2

b) llT_(t)_l g- Ke-Ctlk_Qlll , t _- O,

for all bounded functions h(s) and 0 _-_ _-go"

If Y = c°I(YI'Y2)' Yl = p cos _, Y2 = p sin _, then

equations (llb),(llc) are equivalent to

(13)
a) _ = _n(g) + _ Z(t,_,O,XQt,8 )

b) _ = eR(t,_,o,xQ,e)

t

c) xQ = Tg(t-a)xQ+ gI [dsW_,t_s]F(s,_(s),p(s),xQ,_)ds, t -_ q,
q

where

I
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(14)

a) F(t,_,p,_,8) = F[t,p(q_18cos _ + q_2_sin _) + _]

1
b) Z(t,_,p,@,8) = _ [-@l_(0)sin _+_(0)cos _]F(t,_,p,@,8)

c) R(t,_,p,_,8) = v(8)p+[_ig(0)cos _+_2_(0)sin _]F(t,_,p,_,8).

Suppose that the functions F, Z, R are almost periodic

in t uniformly with respect to the other variables [F(t,_) in

(10) almost periodic in t uniformly with respect to _ will imply

this] and suppose that

(15)

T
= 1

a) Zo(p,8) def lira _ I Z(t+s, _+s, p,O,8)ds
T-_ o

T
= 1

b) Ro(P,8) def lim _ I R(t+s, _+s, p,O,8)ds
T-_ o

that is, the mean values of Z, R are independent of t, _. Notice

that these mean values are computed slightly differently then in

ordinary differential equations. As in [ ], we have put xt = 0

and this is the basic fact that allows the theory to go through in

a simple way. On the other hand, it makes some estimates more

delicate as we shall see below.

Following the same type of reasoning as in ordinary dif-

ferential equations (see [ 6 ] or [19]), there is a transformation

of variables

(16) -_ _ + 8u(t,_,O,8), O -_p + 8v(t,_,O,8)

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
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I

I such that system (13) is equivalent to the system

I a) _ --_(8) + 8 Zo(p,8 ) + 8 Zl(t,_,p,xt,8 )

I (17) b) _ = 8 Ro(P,8 ) + g Rl(t,_,P,XtQ,8)
t

o) xtQ= ram(t-o)4 + mS[dsWQ,t_s]Fl(S,g(s),p(s),xQ,e)ds
GI

I

I

I

where Fl(t,_,p,_,8 ) = F(t,_u,p_v,@,8), the functions Zl, R I

have the same smoothness properties as Z, R, are almost periodic

in t uniformly with respect to the other variables, periodic in

of period 2v, and the functions Zl(t,_,p,O,8), Rl(t,_,p,O,8 )

as well as their lipschitz constants with respect to _,P approach

I

I
I

zero as 8 _0.

Equations of type (17) can arise from system (9) without

the severe restrictions made above on the characteristic equation

(8). In fact, there could be any number of roots of (8) with zero

real parts for 8 = O. The main part of the assumption that we have

I

I
I

used is the dependence of the roots on 8 near 8 = O. In this case,

various transformations on (llb) yield equation of the form (17) with

_,O vectors of not necessarily the same dimension. Also, some roots

(a finite number) of (8) could have positive real parts for 8 = O.

This adds an extra equation to (17) which can be easily discussed.

I

I

For the sake of generality in the applications, we will assume that

_,O are vectors of dimension p,q, respectively, and the functions in

(17) are 2v-periodic in the components of the vector _ = (_l,...,_p).

I

I
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If G : R X R p-_R q,

we say that the set

P : R X RP-_c are given functions,

I

I

(z8) S(a,p) -- [(t,_,p,q0) : P = G(t,_), m = p(t,_), t ¢ R, _ e Rp] I

is an integral manifold of (17) if for every e in Rp, _ in R

and _(t) = _(t,a,e), _(_,o,e) = e, the solution of (lla) with

p, xtQ replaced by G(t,_), p(t,_), respectively, it follows that

the triple _(t), p(t) = G(t,_(t)), xt = p(t,_(t)) is a solution

of (17).

I

I

I
I

THEOREM i. Suppose wQs,t' Ts(t)$ Q satisfy (12) and there is a Po

such that Ro(Po,O) = 0 and the eigenvalues of 8Ro(Po,O)/SP have

nonzero real parts. Then there is an 8 o > 0 and functions

O_ : R X Rp _R q, p8 : R X Rp _C, O_(t,_), Pg(t,_) continuous

in t,_,8 __f°r t e R, _ e Rp, 0 _-8 _-80, almost periodic in t

uniformly with respect to _, periodic in the components of _ of

period 27r, GO = Po' Po = 0 such that S(c_,pg) i__n(18) is an

integral manifold of (17) fo___r0 _ 8 G 8 o • Furthermore, if _8 = (GS'PS)'

then _ys(t,_)/_tP°8_tl..._P exists and is continuous fo__[rPo _ k,

po+_l+...+_p _ k+_ if the functions in (17) have k lipschitz

continuous derivatives with respect to t and (k+_) lipschitz

continuous derivatives with respect to (_,p,_Q). Finally, the

manifold

I
I

I

I

I

I

I
S(o_,p8 ) is asymptotically stable* if the matrix 8Ro(Po)/SP I

*The stability here is the same sense as in Section V.I; namely CI

perturbations in the initial data.

I

I
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has all eigenvalues with negative real parts and unstable if there

is one eigenvalue with a positive real part.

Sketch of the proof: We only give the main elements of the proof of

Theorem 2 since it is so similar to the usual ones in the theory of

ordinary differential equations. Also, to avoid so many formulas,

eigenvalues of Ed_f_Ro(Po,O)/bp have negative realwe assume all

parts and lexpEtl_ Kexp(-ct), t _ O. Letting p _po + D, the

equations (17) become

(19)

a) _ = (02(8) * g _l(t,_,p,xQ,g)

b) _ = gEp + g _l(t,_,p,x_,g)

c)
t

xtQ = Ts(t-_) xQ +e_ S [dsWQ,t_s]_l(S,_(s),p(s),xQs,e)ds
(;

where %(0) = _o' _1 (t'_'p'_'e) = Fl(t'_'Po +p'_'e) and Zl,_I

satisfy the following properties. For any given r > 0, e I _ O,

H > O, there exist a constant K1 > 0 and a continuous nondecreasing

function v(g), 0 _ _ _ e I such that v(O) = 0 and

IZl(t,_,o,o,_)l _-v(_), INz(t,_:,o,o,e)l __v(e),

I_l(t,_;,o,o,e)l __Kl,

I Zl(t, _, p,_,_,)-Zl(t, _, pl,_l,_,)I __

_-[_(e) + kl_][I _;-ql+1P-%I]%11_-_111,

I
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(2o)

[_l(t,_,p,¢p,8)-_i(t,_l'Pl'q)l'8)I _-

_-[v(_)+Kl_]l_-_iI+[v(r)+V(_)+KLK]IP-_II+Klll_-_lII'

1_l(t,_,P,m,_)-_1(t,_,P,m,_)i-_KL[I_-_ll+IP-_Ll+llm-mlll]

for t ¢ R, _, _ic RP,P,PI¢ Rq, IPI,IPll _- r, _,_i _ C, II_II,II_i}I _-H

and 0 -_8 _-81 • Of course, all functions are almost periodic in

t and periodic in _.

Let _I(_I,DI) be the class of continuous functions

G : R X R p -_R q which are bounded by DI and have lipschitz

constant _ with respect to the second variable. Similarly,

let {2(_,D2) be the class of _ : R X R p _C. We introduce the

uniform norm in these spaces and designate the norm by

It is convenient to introduce some notation.

c 62(_,D2), we abbreviate the collection

by (t,_,G,_,8). Also let

"_I_l,"_II_2,

For c_ g _I(_,DI),

(t, _,G(t, _) ,_(t, _) ,8)

(21)

a = (v(8)+KID2)(I+_)+KI_

b --_(8) + _lD2

and then it follows from (14) that

I
I
I

I
I
I

I
I

I
I
I

I

I
I

I
I

I
I
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With the constants defined as above choose e I > 0 and continuous

Aj(e),Dj(e), 0 _-e _-el, Aj(e), Dj(e) -_0 as e -_0 such that,

for 0 _-e _-el,

(23)

v(e) + [b÷V(Ol)]Dl+ KzD2__DlC/K ;

gKI(I+DI+D2 ) _-D2'_c/K ;

2% eKKIA/-____ __m_n[E#_c, 1/_] ;

c-_ > c/2; o-e_ > c/2 ; Az+K< K/_; 2b2+1__

Zklab+K(b+v(D1) ) < c/4; l+8K_e2/3c 2 __4

Let _(Z_,D) -- __.._I(Z_j..,D1)X _,-_A2,D2) and for any r in i_(A,D),

T"= (G,IB), define I1_tl = IIGIl_l + KKIlI611_2/_,.Forany r--(G,IB)
in _(A,D), let _(t,_,B,)-), _(e,_,B,),) = _, be the solution of

I
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(19a) with (P,xt) replaced by _t,_) and define a transformation

Tr by

O

(24) b) (TiT)(q,e) = 8 f e-SEu Rl(U+_,_(u+_,(_,8,r),Y,g)du
_Q@

we obtain

c)
0

(T2_)(_,e)--_ I [dWQ,_u]_l(U+_,_,e,_),_,e)du•
_GO

We shall show that this equation has a unique solution in

I

I

I

I

I

I

I
for 0 _-8 _-8 • This will prove the existence of an integral

o

From (12),(22) and (23), we have IIT1YtI_,I_-D1, LIT2_I_2 _-D 2. I

From the Lipschitz constant of 51 in (22) and (19a),

_- e-eau I el-e21 ÷( e-_au- 1)[ bllG1-G211dl+TK1 II_1-6211_ 22

I

for -_ < u & O.

Using this fact and the estimates (22),(23), we have

I(Tl_l)(_,el)-(Tl_2)(_,e2)l _-_lel-e21 ÷11q-_211_/4,

I(T2_l)(_,el)-(T2_2)(_,e2)l _-_1 el-e21÷11q-_211¢_1

for 0 _-8 -_81 • This implies T : _(_,D) -_(_,D) and is a

I

I

I
I
I

I

I
I
I
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contraction since ilTrx-Tr211_ llyl-r211@14 for 0 -_8 _-8 1. This

completes the proof of the existence of an integral manifold and

also shows that the integral manifold is lipschitzian in _.

To obtain the smoothness properties of the manifold

S(_,_8) one proceeds in exactly the same manner as above except

making use of a different class of functions _l,_ 2. For example,

to show that GS,_g have continuous first derivatives with respect

to _ if the functions in (17) have continuous first derivatives

respect to _,p,_Q one defines _l(2_,D1) to be a class ofwith

functions (_ : R X Rp -_Rq such that l(_(t,_)l _-DI, l_G(t,_)/_l __D2

for all t,_. The class _2(2_,D2) is defined in the same manner.

Using the same definition of T as in (24), one shows by a

proper choice of ___J(8)'Dj(8) -_0 as g -_0 that T has a unique

point in E 1 X _2" The other derivatives are analyzed infixed

exactly the same manner.

We will not prove the stability result since it again

involves complicated estimates of the above type and the reader

can easily supply the details by following the standard procedure

in the method of integral manifolds in ordinary differential

equations together with the lemma i of section V.I.

It is clear that Theorem 2 has an interpretation in the

original equation (9) at the beginning of this section. For simplicity,

we state an important corollary for the special case when F in (9)

is independent of t. The notations are the ones given at the

beginning of this section.

I
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(2_)

12_6o I

F(t,$) = F($) for all t and let I

G(p) = v(O)_ +

2_-
i

+ _ So [@lo(O)cos s+,2o(O)sin s]g[O(mloCOS s_P2oSin s)]ds.

If there is a O° such that G(Po) % O, dG(Po)/dp _ O, then there

is an g I > O, a constant _*(8) and a function x*(t,g)j continuous

in t,g and having a continuous derivative with respect to t,

-_ < t < _, 0 _-g <-gl,

x*(t,O) = po[_lo(O)coS_Oot+_2o(O )sin_ot],

_*(0) = _o' x*Ct+_*(g),8) = x*(t,8) such that x*(t,g) satisfies

(9) and since it is differentiable satisfies (lO). The periodic

solution x*(-,g) is orbitally asymptotically stable* if dG(Oo)/do < 0

and unstable if dG(Po)/dp > O.

As an example, consider the equation

I

I
I
I

I

I
I
I

(26) _(t) = C_(t-r)-#x(t) - C_x(t-r) + gF(xt)

where g -_O, r > O, r > _ > O, (_ = G(g) = (_o(l+g), where G ° is

A periodic solution x(t) of (i0) is called asymptotically

orbitally stable if the orbit, U_x_, of x in C is asymptotically

stable in the sense of CI perturbations.

I

I

I

I

I

I

I

I
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the unique real number in (0,i) such that the characteristic

equation III(35) for the linear system III(33) has two purely

imaginary roots ± i_ o, _ > O, and the remaining roots have realO

parts < -5 < O. Brayton [ 13] has shown that such an G exists°
O

This implies that there is an _l > 0 such that the equation

(27) k - c_(e)ke-kr+ _3 + a(e)ye -kr = 0

has two simple roots ev(e) _ i_(e), _o) = _o' v(e),_g) continuous

in 0 _ _ _ gl' and the remaining roots have real parts < -8 < 0

for 0 _ g _ 81" We are writing the equation (26) in differential

form for simplicity in notation but it always understood that

solutions are defined by means of the integrated form of this equation.

In the discussion of this example, we use the notations

introduced at the end of section IIIo A straightforward computation

on the characteristic equation (27) shows that

6C + _ D
= O

(28) 2v(o) c2 +D2 >o,

where C,D are defined in IIl(40). Using the formula for W(O)

in III(40), it is easily seen that the function G(p) in (25) is

given by

!
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(29)

_C_n D

o G*(_)

P i i

G*(O) --g + _C+_ D'_ S (Dcos s+esin s)r(P(mloCOS S_2oSin s))ds
O O

From Corollary i, we can now state the following result: equation

(26) will have an asymptotically orbitally stable periodic solution

if there exists a Po such that G*(Po) : O, dG*(Po)/dp < 0 and

an unstable one if G*(Po) = O, dG*(Po)/dp > O.

In the particular case where F(xt) = h(x(t)) relation

(29) yields

2v
p C i

G*(_) -- 7 + _C_ D " _ "f hC_cos _)cos _d_
0 0

I
I

i
i
I

I
I

I
I

and the criterion for existence of a periodic solution is the same i

as the one obtained by Brayton [13]. However, we can also say

something about the stability of the solution. In the particular i

case, when h(x) = -x3, an easy computation yields G*(p) =

(P/2)[1-3CP2/4(8C*<OoD)] and G*(Po) = 0, dG*(Po)/dP = -1 for I

2 = 4(BC_0oD)/3C. Thus, the equation has an asymptoticallyPo

orbitally stable periodic solution.

AS another illustration, suppose FCxtl = -2(t-s),

0 _ s _ r. Then

I

I

I

II

I
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(2/p)a*(p) _-1
2

3P
_-LUcos _ s-D sin (o s] .

0 0

As before, if C cos _o s - D sin _oS > O, the we obtain an asymp-

totically orbitally stable periodic solution. To find the limitations

on s for which this inequality remains valid is difficult since

_o depends upon all parameters in the linear differential equation

III(33).

This example illustrates the application of the general

theory to autonomous systems, but it is clear that Theorem 2 is

equally applicable to nonautonomous equation.
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To appear in the American Journal of Physics

A Note on Contact Transformations

by

K. R. Meyer*

Abstract

Not all contact transformations are of the form p = Wq(q,P)

and Q = Wp(q,P) but this note shows that after a linear change of

variables any contact transformation can be written in this form.

This Research was supported by the National Aeronautics and Space
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It is well knownthat a transformation of the form

(1) Pi = _i (q'P)' Qi = _'l(q'P)

defines a contact transformation from the q_p variables to the

Q_P variables where q,p_Q,P are n-vectors_ W is a scalar func-

tion with continuous second partial derivatives with respect to all

arguments and subscripts denote componentsof the vectors. See for

example [i], and [2]. It is not always true that any contact trans-

formation can be written in the form i) or even in one of the other

three commonvariations of i). This fact is pointed out in [2] and

[3] and the author recommends[2] as a careful and readable source

on contact transformations (see in particular, page 69-70 of [2]).

This note will show, however, that any contact transformation ca___nn

be written as a composition of a linear orthogonal contact trans-

formation and a contact transformation of the form i). That is to

say_ given any contact transformation one can first make a change

of variables that is linear_ orthogonal and preserves Hamiltonian

form and then write the transformation in the form i). The above

is to be taken as a local statement_ that is, the above statement

holds only in a sufficiently small neighborhood of a point. Also

we shall assume that all functions are sufficiently differentiable

that the indicated derivatives are continuous and that the implicit

function theorem can be applied. The assumption that all functions

considered have continuous second partial derivatives with respect

I
I
I

I
I
I

I
I

I
I

I
I

I
I

I
I
I
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to all arguments will suffice.

To avoid confusion a contact transformation will be taken

in the sense of Whittaker [i], page 293. That is:

Definition: A transformation

(2) _$: Q=_(q,p), p _(q,p)

where q_p_Q_P are n-vectors and _ and _ are n-vector valued used

functions of q and p will be called a contact transformation if

there exists a scalar valued function S(q,p) such that

n

(3) dS(q,p)-- Z Cpi_qi + _i(q,p)d_i(q,p)}.
i=l

n

Observe that 3) is often written dS = _ [Pidqi + QidPi }
i=l

and that this short notation is the cause of some of the confusion

in the literature. The equality 3) states that S must be con-

sidered as a function of p and q only. Indeed the whole question

of when a contact transformation 2) can be written in the form i)

rests on the question of when can S be written as a function of

q_P. If the second equation in 2) can be solved for p in terms

of p and q and the result substituted into S we would have the

desired function W. But when can we solve the second equation in

2) for p in terms of q_ and P? If the sub-Jacobian det [_-_]

is non zero then we can solve this equation, but there is no reason

to suppose that it is nonzero. At this point a result in [3] can be used

!
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to straighten things out.

The formal proof is as follows. Let 2) or _ be a given

contact transformation. Without loss of generality we can assume

that _ takes the origin into the origin since otherwise we would

shift the origin by a translation. Let T be the Jacobian matrix

of _ evaluated at the origin_ i.e.

where A = [_jj(O_O))_ B = [_jj(O_O)]_ C =[_jj(O_O)] and

D = [-_i(O,O)].

Now by a result in [3]_ page 44 there exists nonsingular

contact matrices 0 and R where O is orthogonal and R is

positive definite symmetric such that T = RO. This result for con-

tact matrices is the analog of the well known result in 3-dimensions

that says that any matrix of a linear transformation is the product

of a pure rotation (or rotation and reflection) and a pure dilation.

It should be remarked that in [3] as in many other references a con-

tact matrix is called symplectic and is sometimes given a different

but equivalent definition (see [2]).

Let _ be the transformation whose representation is the

matrix O. Define a new transformation _ by _= _oO -I

I
I
I
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and so _ = _ o _. Observe that we have "factored" the trans-

formation _ into two operations" first apply _ and then

_°C -_= • Another way of looking at is that we have

changed coordinates by the linear transformation _ and now

has the form _ in the new coordinates. We now want to show that

can be written in the form i).

is a contact transformation since it is the compo-

I matrix at the origin is TO -I = (RO)O -I = R.

I
I

I

sition of two contact transformations and moreover its Jacobian

Thus if _ is given

by Q = a(q',p'), P = b(q',p')

A' = 0_0)] etc.

and R= A' B' I where

IC' D'

Now R is positive definite and symmetric and so by

Sylvester's criterion [4], page 306, or [5] page 94 each principal

I

I

I

I

subdeterminant of R is positive and so in particular

_o.

D' = 0,0)] is nonsingular.

Thus, we can solve the equation P = b(q' ,p') for p'

to obtain p' = h(q',P).

Since # is a contact transformation there exists a

generating function S'(q',p') such that

I

I

I
I

(4)
n

dS'(q',p') = 7. [p_dq_ + bi(q',p')dai(q',p,)].
i=l

Let W(q',P) = S'(q',h(q',P)) now

(7) n _W _.dPi]dW(q',P) = Z [N'dq_ +
i=l x

I
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but dW = dS at corresponding points and so

n

(6) _w(q,,P): Z {p[dq[+ bi(q',p')dPi}
i=l

where in 6) p' = h(q',P).

n _o. _b. 8b.

Now since dP. = _ [ q3 + PJ ] and since [ }
l j=l j

is nonsingular the differentials dq_...,d_,dPl,...,dP n are

linearly independent and so we can equate coefficients in 5) and 6)

to obtain

(7) Pi: .(q',P) and Qi:¥i (q''P)"

Therefore _ is of the form i).

Observe that we can obtain one of the other common varia-

tions of i) when any one of the other sub-Jacobian matrices is non-

singular. The procedure we have used g_ves that A' is nonsingular

so this gives one variant. By changing variables again with the

linear orthogonal contact matrix

the new _ is of the form

-B'

-D' C'

0 I

-I

A'

0

then the Jacobian of

and so now the upper right

and lower left sub-Jacobian matrices are nonsingular and by the

same procedure you get the other two variants.

I
I
I

I
I
I
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I
I
I
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To appear in the Proceedings of the

American Mathematical Society

ON COMPUTING THE INDEX IN HIGHER DIMENSIONS

by

K. R. Meyer

Poincar6 [1] gave a simple geometric procedure for computing

the index of a critical point of a vector field in the plane. If the

trajectories induced by the field are tangent to a small circle at a

finite number of points and i and e denote the number of internal

• S

and external tangents then Polncare gave the following formula for

the index

i-e

I= 1+--
2

A generalization of this formula to higher dimensions will be

discussed in this paper.

Now let w be a smooth vector field defined in an open subset

of Rn, n a 2_ where V contains the unit n-1 sphere Sn-1 in its

interior. That is to say v is a smooth map from V into R n.

*This research was supported by the National Aeronautics and

Space Administration under Contract No. NAS8-11264.

V

I
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Furthermore assume that llv(x)ll = i for all x e Sn-I where II II is

the Euclidean norm. Fix a coordinate system in Rn and consider the

n-frame H(x) at each x e V that is a parallel displacement of

the original coordinate system. In this fixed coordinate system the

point (0,...,0, i) will be called the north pole and other geographic

terminology consistent with this convention will be used.

The degree of the map v[S n-I Sn-I Sn-I: -_ is called the

index of the vector field v with respect to Sn-I and will be denoted

Sn-l)by I(v, . In terms of the framing H the vector field v has

the form v(x) = al(x)Hl(x)+ ... +an(x)Hn(x) and so

v[ Sn-I x), , ).: x-_ (al( ... an(X)

A homotopy of the field v will always be smooth and through

Sn-l.
fields vt such that llvt(x)lI = 1 for all x e A homotopy of

the framing will always be smooth and through rigid rotations about each

point. Both the above operations leave the index unchanged.

Let q denote the unit outward normal vector field on Sn-l.

The following observation is due to M. M. Peixoto.

LEMMA: There exists a smooth vector field _ that is g-homotopic

to v such that the field _ is tangent to Sn-I only at a finite

number of smooth closed connected n-2 submanifolds MI,...,M p- These

submanifolds are the boundaries of a finite number of smooth connected

I
I
I

I
I
I

I
I

I
I
I

I
I
I

I
I
I

I
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n-i submanifolds with boundary AI,...,Aq such that the field

i has a positive component in the direction of _ at each interior

point of Ai, i = l,...,q. At each point of B = Sn-I - _ A. the
i=l i --

I field _ ha___s_ negative component in the direction of _.

I

I
I

I
I

I
I

I
I

I

I

I

Proof. Consider the map gl Sn-I _ R defined by taking the component

of v in the direction of _. By applying Sard's theorem in the usual

way one constructs _ from w.

Henceforth it will be assumed that the vector field has

been prepared in accordance with the above lemma. The Mi, i = l,...,p

will be called manifolds of contact and any region where the field has

a positive (negative) component in the direction of N will be called

a region of egress (ingress).

is a region of egress and B

and the

A..

J

Thus the interior of A._ i = l,...,q,
l

is a region of ingress.

Let the Ai, i = l,...,q be oriented as submanifolds of Sn-I

Mi, i = l,...,p be oriented as boundaries of the appropriate

There exists a framing _J

homotopic to H such that along M.
J

of V that is smoothly

the last component of Zj is h.

The field _ on Mj can be expressed as bl(X)TJl(X)+...+bn_l(X)TJn_l(X ).

The degree of the map h: Mj _ Sn-2 defined by h: x -_ (bl(X),...,bn_l(X))

will be called the index of _ with respect to M. and will be denoted
J

by I(_,Mj). Clearly this index does not depend on the choice of 7,j.

We can now state our main result.

I

I
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Proposition:

of egress is

The index of the field such that all of Sn-I

+i. In all other cases

is a region

P

I(_,S n-l) : (i) n
- + Z I(_,Mj)

j=l

Proof. Clearly the theorem holds if all of Sn-I is a region of egress

so we can assume that not all of Sn-I is a region of egress. The field

can be deformed to the field _' so that all the manifolds of contact

of _' lie north of the Tropic of Capricorn and so that the region

south of the Tropic of Capricorn is a region of ingress. Moreover the

deformation can be constructed so that there is a one to one correspon-

dence between the manifolds of contact of _ and _' and such that the

corresponding indices are the same. The frame H can be deformed to

a frame _ where _ has the following properties (i) north of the

Tropic of Capricorn the last component of _. is _ (ii) in the southern

hemisphere H and _ agree (iii) between the equator and the Tropic

of Capricorn the homotopy between _ and H can be accomplished by a

rotation through an angle less than or equal to 3_/8.

Now _,(x): bl(X)Zl(X)+...+bn(X)_n(X).Thedegreeofthe

sn-i sn-imap w: -_ given by w: x -_ (bl(X),...,bn(X)) is l(_,sn-l).

Now w maps the manifolds of contact into the equator and the regions

of egress into the northern hemisphere. Now we count the number of

times the northern hemisphere is covered.

Let F = M I U...U M_I be the boundary of AI, Sn-2 the

I
I
I

I
I
I

I

I
I
I

I
I

I
I

I
I

I
I
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i
equator of Sn-I and N the northern hemisphere of Sn-l. From the

i following commutive diagram

I

I
I

I
I

I
I

I
i

Hn(AI,F) Hn_I(F)

I-In(Sn-l, sn-2 ) < _ > Hn_l(Sn-2 )

it follows that if I(_',M i) = ki, that is the generator of Hn_l(Mi)

is mapped by w. onto ki times the generator of H n_l(Sn-2), then

the generator of Hn(AI,F ) is mapped by w. onto (kl+...+k_l) times

sn-l,sn-2 )the generator of Hn( . In the above "the generator" is to

be taken as the generator corresponding to the oriented manifold

itself.

Now if _i is the field obtained from _' by changing the

sign of the last component of _' in the region A I then by the above

I(z',S n-l) : I(_I,S 2) + Z I(_',Mi).
i=l

!
By repeating this process for each region of egress the theorem

! follows since in the last step

q

I I(_' ,Sn-l) n-i: 1(_q,s ) +ZI(W,M i)
i=l

I
and since _q is a field such that all of Sn-I is a region of ingress

!

i
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• sn-l.
and so I(_q_ ) = (-i) n .

REMARK i. One can see at once that this formula yields an effective

geometric proeeedure for computing the index in dimension 2 and 3.

In dimension 2 it can readily be seen that this formula is essentially

the same as that of Poincar@. For n = 3 the manifolds of contact

are circles and so the formula can be applied to reduce the problem

of computing the index on a 2 sphere to computing the index on several

circles. Then one can apply either Poincare's formula of the above to

compute the index on these circles.

REMARK 2. One can also use the above formula to compute the index in

dimension 4. In this case the manifolds of contact are oriented 2-mani-

folds or spheres with handles. If the genus of a 2-manifold is g then

manifold can be made into a sphere by making g cuts and adding 2q hemi-

sphere. The cuts can be taken so as not to intersect any of the mani-

folds of contact. If a cut is in a region of egress (ingress) one can

define a new field to be smooth and outward (inward) on the two hemi-

spheres attached along the cuts.The index of the new field is increased

by one for each cut in a region of egress and decreased by one for each

cut in a region of ingress. Thus the problem of computing the index

along a 2-manifold is reduced to computing the index along a 2-sphere

and the above formula can be applied.

For example the index of the outward normal field

2-manifold embedded in R3 is half the Euler characteristic. This is

a well known result of Hopf [2].

!

!

!

!
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PERIODICSOLUTIONSOFDIFFERENTIALEQUATIONSWITH

TIMELAGCONTAININGA SMALLPARAMETER

By Carlos Perell_

Introduction.

In this paper we show that the method of Cesari and Hale for the deter-

mination of periodic solutions of ordinary differential equations can be extend-

ed to the case in which these equations contain a time lag.

An ordinary differential equation with time lag (also called functional

differential equation) differs from those without lag in that the derivative

of a solution function at a time t depends also on the values of this sol-

ution at times preceding t. We further restrict our equations by considering

only time lags less than a fixed number r.

In the notation introduced by Hale [1] we consider equations of the form

(G) _(t) : F(t, xt) ,

where F denotes a functional (real or complex) defined for each t

the "segment of solution" xt, of length r, preceeding t. Here

an n-vector.

As a particular case we encounter the difference-differential equations

and for

x denotes

(_) _(t) = f(t, x(t), x(t-Tl),...,x(t-_) ).

We will consider here equations of the form

(_) _<(t) : L(xt) + N(t, xt, _),

where L is linear in xt (in a space to be defined) and N(t, _, _) tends

to zero as both _ and the parameter _ tend to zero.
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In analogy with what has been done for ordinary differential equations

(see Hale [2]), we seek a method to determine the T-periodic solutions of (y)

when N is T-periodic in t.

Many of the methods which have been considered for ordinary differential

equations are difficult to apply in the case of time lag as will be shown in

the next paragraphs.

If in (_) F is T-periodic in t, we might assume that our solution

has a trigonometric Fourier expansion of period T. We then reduce the problem

of finding a T-periodic solution of (_) to that of solving the infinite number

of equations obtained by equating coefficients. Making the above reduction

and solving the equations which result is in general extremely difficult even

when there is no lag present.

Cesari [3] shows that for nonlinear equations without lag it is not

necessary to consider an infinity of solutions, but merely to see if some

elements of a family of periodic functions, which are obtained as fixed points

of a family of operators, satisfy a finite number (2m+l) of "determining

equations". Any of these fixed points which satisfies the determining equations

is a periodic solution. The difficulty lies in finding the fixed points and

verifying that they satisfy the determining equations. By means of an implicit

function theorem, however, he succeeds in showing that under certain circum-

stances it is sufficient to consider the (2m+l)-parameter family of trigonometric

polynomial containing the first m harmonics instead of the family of fixed

points. The determining equations can then actually be used to calculate the

2m+l coefficients of the polynomials satisfying them. Further it can be shown

that the functions thus obtained lie in the vicinity of the periodic solutions

of the equation. This is nothing more than the justification of the Galerkin

!
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procedure. The method is still very difficult to apply, even in the most

simple cases.

The generalization of the above method to equations with lag will not be

attempted here and will be the subject of some further publication. Let us re-

mark, however, that the method of Cesari in [3] relies an the use of L2 spaces

and these do not seem the most appropriate for equations like (8), which we want

to be able to include in our theory. It looks as if the modification of the

method introduced by Knoblock [4] using uniform norms would generalize without

trouble to lag equations including the difference-differential type.

The basis of the perturbation procedure of Cesari and Hale for (y) without

lag 3 as it is shown in the last part of [3], is essentially the same as in the case

above. Now, however, we look for periodic solutions of the perturbed system

which tend to periodic solutions of the linear system as the parameter

tends to zero.

The generalization of this procedure to lag equations is made possible

by decomposing equation (y) by means of the projection operators defined by

Hale [i]. We then obtain an ordinary differential equation without time lag

perturbed with a term containing some lag element which couples this equation

with a second one. By neglecting this lag element we obtain an ordinary per-

turbation problem which can be dealt with by the methods mentioned above. For

small _ the periodic solutions of the unperturbed equation yielded by the

determining equations are close to periodic solutions of equation (y). In a first

approximation we want to find the periodic solution of the linear equation to

which the periodic solutions of the perturbed one tend.

The basic idea behind the decomposition in [i] and the reduction of the

problem to equations without lag is to consider a function space as our phase

space. Notice that the initial value problem for equation (G) is well posed

I
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if we give as initial condition a function defined in an interval of length r.

In fact there might be an infinity of functions which satisfy the equation and

pass through a given point of the n-dimensional euclidean space.

In section I we give the required background material on equations with

time lag. In section II we develop the method for (y) nonautonomous. The re-

duction of (r) autonomous to the previous case is treated in section III. In

the next section we show how the basic procedure can be used to determine the

asymptotic stability of a periodic solution. In order to do that we require

some simple results from the theory of periodic linear equations with time lag

that we borrow from Stokes [5] and Shimanov [6]. In section V we present a

simple example arising from a control system with a delay in the feedback.

Section VI is devoted to the procedure to be followed when we have to use

higher order terms to ascertain the existence of periodic solutions and an

example of the application of this procedure is given.



15-6

I. Preliminaries.

Let En be the n-dimensional complex euclidean space and consider the

continuous function x : I-r, T) _ En, x, r > O. Consider also the space

C([-r, 0], En) = C of the continuous functions defined in the closed interval

[-r, O] with range in En, with the sup norm. We define the operator _/t

associating an element of C to x for every t in [0, _) by means of the

rule

_/t(x) = x(t + e), e in [-r, 0].

In order to simplify the notation we shall use _/t(x) : xt. (See Hale [1]).

Given a functional F : R X C -_ En an letting _(t) represent the

right hand derivative of x at t, we define a functional-differential equation

as the relation

(i) _(t) = F(t, xt).

The function F does not need to be defined on the whole of R × C.

In fact for our use in this work we shall suppose it defined for all R and in

an open ball CH = [_ e C : ll_II< H] .

We say that x(_, _) : [G - r, x)_ En is a solution of (i) with initial

value _ at _ if there exists • > a such that xt(_ , _) is in CH for t

in [s, _), x (s, _) = 9 and (1) is satisfied by x(_ q0)(t), t in [s, _).

If (1) is autonomous, i.e., F does not depend explicitly on t, and

we choose _ = O, we abbreviate xt(_ , 9) by xt(9 ).

Consider the case in which (1) is autonomous and F is a continuous linear

functional:
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(2) u(t) = L(ut).

This case is particularly important to us, since most of the properties

of our perturbed equations (y) depend on the unperturbed ones.

In the next paragraphs we summarize the parts of the theory of (2)

which are relevant to this work. For a more detailed exposition, with proofs,

see [ 1].

The Riesz representation theorem tells us that we can write

o

(3) z,(m) = I [d,l(e)]m(e) ,
-r

where q(e) is an n X n matrix of function of bounded variation on [-r, 0].

On the other hand it is well known that (2) has a unique solution defined for

t in [0, m) for any initial value q_ in C at zero (see Krasovskii [7],

or Halanay [8]).

We define the semi-group of operator U(t) : C _ C by

U(t)_ = ut(_) ,

where u(_) is the solution of (2) with initial value _ at zero. For each

t > 0, _ > O, U(t) is a bounded linear operator satisfying U(t + T) = U(t)U(_ ).

In terms of the matrix q appearing on (3) we find that the characteristic

values of (2) are given as the roots of the characteristic equation

o

(4) det (k I - I [dq(e)] eke) = 0
-r

H
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There are only a finite number of roots of (4) in any half plane Re z -_ y,

and each of these roots has finite multiplicity.

If k has multiplicity k, then there are k, and no more than

independent solutions of (2) of the form y(t) = p(t)e _t, where p(t)

polynomial with coefficients in En of degree __ k-1.

We observe that these solutions can be prolongated backwards, i.e., there

is a function y: R _E n, such that

u(yx)(t) = y(t-x) for t, I: c R.

Let Y denote the matrix having as columns the k linealy independent

solution mentioned above. Then there exists a constant matrix B, with

as only characteristic value, such that

Bt
Y(t) = Y(O)e , t _ R.

k linear

is a

If we define ¢ = Yo' i.e., the matrix whose columns are the elements of

corresponding to Yo' then we have:

Yt = U(t)¢ = Ce Bt, ¢(e) = ¢(O)e Be, eel-r, 0].

This relation says that ¢ is the basis of a finite dimensional sub-

space P(A) of C which is invariant under U(t). In this subspace we can

extend the definition of U(t) to negative values of t by taking U(-t) =

-Bt
e .

Given any finite set A = [h ] of characteristic values of (2) it is
1

possible to obtain a set of functions of the form y(t) = p(t)e kit, t c R,

such that, if Y denotes the matrix whose columns are this basis, there exists

a constant matrix B such that

I
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Y(t) = _(O)e Bt , t e R,

B has as characteristic values the elements of A.

The linear subspace spanned by the columns of Y = $ is called the
o

generalized eigenspace associated with A, and will be denoted by P(A).

If _ is an element of P(A) we have then

(6) ut(_ ) = U(t)_ = seBtb , $ = # b .

That shows that in P(A) the behavior of the solution is the same as

that of an ordinary differential equation with constant coefficients.

If L is a real functional (L : C _Rn), and we are only interested

in the real part of ut, then we know that both _ and _ are characteristic

roots. By associating k with _ we can choose @ as a matrix whose elements

are real functions and such that their columns form a basis for the real part

of R(A). In this case B will be a real constant matrix.

We will next characterize the space Q(A) complementary to P(A) which

will be also invariant under the operator U(t) for t _ 0. Every element

of C will then be uniquely expressible as the sum of an element of P(A) and one of Q(A).

These elements are called the projections of @ on P(A) and Q(A) respect-

ively. If pp

(7)

and
pQ designate the operators of projection we can write

= pp($)+ pQC_)•

pp(_) and pQ($) by _P and cpQ respect-To abbreviate we designate

ively. We write then (7) as

P _Q= _ +

I
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We obtain the characterization of Q(A)

equation, known as the adjoint to (2)

O

(8) _(s) = - /[dnT(O)]_(s-O) ,
-r

with the help of the following

s__O,

T
(_

(9)

is the transpose of q), and its associated charactertistic equation

o

det (?_I - I [dnT(o)]e xo) = 0 .

-r

The solutions of (4) and (9) are the same. A solution of (8) is uniquely

determined by giving an initial condition _ in C([O, r],E n) d_f C at O,

and integrating (8) for s _ O. To any _ in C and _ in C*_ we associate

the bilinear form (_, _) defined by

o e

(_o) (% m)= _T(o)_(o) - / /
-r o

_(_ _ e)[d_(e)]m(_)d_ .

If ¢ is a basis for P(A) and _ is a basis for P*(A) (the generalized

eigenspace of A in C*), then (_, ¢) = (_j, q)k) ) is non singular and, by

changing the bases, can be taken as the identity matrix. Let us then assume

(lZ) (% _)= z .

The space Q(A) is characterized by

(12) Q(A)= {_ c c : (_,_) =o].

If $ e Q(A), then U(t)_ e Q(A) for t __ O. In this case the solutions

are not necessarily defined for negative t as in P(A).

We have then that the projection operator pp is defined by

_P= pp_= _(_,_)
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and

q_Q: pQqD = @ - ppqD .

Consider now the equation

(_3) _(t) : L(xt) + N(t, xt).

We want an expression, similar to the variation of parameters formula,

which will give the solution of (13) for a given initial value in terms of

the solutions of (2).

Let X(t) be the n X n matrix whose columns are the solutions for

t _ -r of equation (2) with X(t) = 0 for t in [-r, O) and X(O) = I,

the identity matrix. Then we have the following representation for the

solutions of (13) with initial value _ at

Perell6 [i0]):

(see Halanay [8],[9 ] and Hale-

t

(14) x(t) = U(t-o)_(0) + I X(t-T)N(T, xT)d_ ,

ee[-r, O]x(_ + e) : e(e)

t__O,

It is shown in [9] that by projecting X
o

previously, that is, by taking

X P ¢(_; eFT(o)o = Xo) =

xQ= x - XP
o o o '

on P and Q as indicated

the equation (14) can be decomposed as follows:

!



(_)
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t

xPce) = uCt-G)q)Pce) + IU(t-X)XoPCe)NCT, xx)dx ,

t

xQ(e) = u(t-(_)cpQ(e) + IuCt-x)xtCe)N(x, xx)dx ,

t eR

t__O

From now on, in order to abbreviate, we will not write the @ when

using these formulas.
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II. The nonautonomous equation

Consider equation (2) and assume that A is the set of all of its

2wn

characteristic roots of the form i-_--, n integer. We know there is only

a finite number of such roots. Assume, moreover that the dimension of the

eigenspaces spanned by these roots coincide with their multiplicity. Then

P(A) will consist of all those functions which are initial values of T-per-

iodic solutions of (2).

According to (6) the orbits (or paths) of the equation in P(A) are

given by ut(_ ) = ceBtb,

has the elements of A

Notice that p and

If w(t) = (W,wt)

equation

where $ = Cb and B is a p X p matrix which

as eigenvalues and has simple elementary divisors.

n are not related, and any can be larger than the other.

we have that for ut in P(A), w(t) satisfies the linear

(16)

the norm

7

norm llxt_Pl= sup [ilxtll, t e R}, )IxtlI = sup [Ix(e)], e 6[-r, 0]],Ix I

_?: Sp _S p denotes the operator defined by

i JeB(t-T) f(T)dx.
_(f) = _ o

Notice that #(f)

solution of (16).

_(t) = Bw(t).

We introduce some more notation that we need in the next pages:

SP denotes the space of T-periodic functions y from R into E P with

ilyils = sup [ly(t) l, t c R),lyl 2 = y'y, y* the conjugate transpose of y.

denotes the space of T-periodic functions xt from R into C with the

as above.

Bt
is of the form e a and hence will correspond to some

I
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By _ : _ _Z we denote the operator definded by

_(xt) = @ _(@, xt) •

Here we are using the notation xt : R _C even if there is no x : R _E n

corresponding to it (see the definition of xt at the beginning of section I).

The use of this notation is similar to the abuse made when we write x(t): R _E n

which we do very frequently in order to use less symbols.

To begin with we will find necessary and sufficient conditions for the

equation

(17) _(t) = L(xt) + f(t) ,

with f in Sn and L as above to have T-periodic solutions. Such con-

ditions are given in a more general theorem in [8], but we prefer to include

the proof for our case which is much simpler.

Lemma i.

If f e Sp, then the e_uation

(18) _(t) = B y(t) + f(t) ,

B as in (16), ha___sa periodic solution if and only if _(f) = O, and in

this case for every a c Ep there is a unique solution y*(a) of (18) such

Bt
tha____t_(y*(a) = e a = w(a)(t) , i.e., _(y*(a)) is th___esolution of (16)

with initial value a at t = O.

Moreover the following estimate holds

T

JJy*(a) - w(a)JJS _- K f Jf(T) JdT
O

where K does not depend on f or a.
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a at

by

Remark:

t=O.

Proof:

y*(a) is not necessarily the solution of (18) with initial value

The solution of (18) with initial value Yo at t = 0 is given

_t(19) y(t)= e Yo+ f eB(t-_)f(_)d_

Bt

As e Yo is T-periodic, in order to have y(t) T-periodic it is nec-

t eB(t_ T)
essary and sufficient that fo f(_)d_ be T-periodic, that is, we

require the STe-B_f(T)dT = 0 or, using our notation, _(f) = O.

From (19) we have for y c Sp that e-Bty(t) = a + g(t), where

1 T te-BTf(a = Yo + _ So _ T)dT = Yo + c, and g is a function in Sp with mean

value 0.

Applying the operator _ to y c Sp we obtain

°_t(_o_S_o_o _t_(y)(t) = +_ S e-BTf(_)d_ d _) = e a = v(a)(t).

Hence _ gives a 1-1 correspondence between the periodic solutions

of (18) and those of (16).

From the fact that

IIgils
t t

__2T II e-Btlis folf(_)id_-- k folf(_)id_

the last part of the lemma follows by taking K = IieBt!Isk.For the matrices

Bt -Bt
e and e we are using as S norm the supremum of the square root of

the sum of the product of their elements by their conjugates for all t.

Lemma 2.

If h is in Sn, then there exists a unique y ¢ Q(A) such that

I
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(2o)

t

*Q °Qxt = U(t)$ + f U(t-x)X h(T)dx
0

is T-periodic.

Moreover we have

T

IlxtQ Ilz -_K' folh(_)ld_ ,

where K' is independent of the h chosen.

Proof: If x_*Q is T-periodic we have
b

= U(T)$ + _Tu(T-x)xQ h(x)dT, that is
0 u

q_ = (I-U(T))-IfTu(T-T)xQ h(T)d_ .
0 o

We have that I-U(T) has an inverse if (I-U(T))@ = 0 implies _ = 0.

This is the case, since we have assumed that there are no T-periodic solutions

of (2) in Q(A) besides the identically zero. Hence _ is uniquely determined.

Notice that - - - - - --]Tu(T-x)xQ(e)h(x)dT is a continuous function in 8 for 8 in
o o

[-r, o].

*Q
The expression for xt is

t+T

*Q -i XoQx t = (I-U(TI) f U(t+T-T) .h(x)dT .
t

*Q
The estimate on the 7.-norm of xt is obtained as follows:

Ilxt Q II E = 11(I-U(T))-I N sup

xc[t, t+T]

T

IIU(t+T-T)xQII folh(_)ld_ =

II(I-U(T))-ill
T T

sup IIu(t)xoQil lolh(_)ld_ = K' folh(_)ld_ •
te[O, T]
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By using our decomposition (15) we obtain immediately the desired prop-

erty concerning equation (17),

Theorem i.

The equation

(17) _(t)--T,(xt)+ f(t)

with f c Sn and

(_T(o)f) = O,

a unique solution

and in this __ for ever_ ¢a i__n P(A)

(a) such that _ (_, xt (a) ) eBt_--- ae

L as in (2) has a T-periodic solution if and onl__ i_f

there exists

Moreover the followin_ estimate holds,

(21)
T

IlxtCa) - utC_a)llz -__' fotfC_)ld_ ,

where _' does not depend o__n f.

Notice that the condition _(_T(o)f) is equivalent to

T

foe-B_T(o)f(x)dx-- = 0 ,

T

fo_Cx)f(_)dx = 0 ,

or

that is, in order for (17) to have some T-periodic solution it is neccessary

and sufficient that f be orthogonal, in the sense of (22), to the T-periodic

solutions _(t) of the equation adjoint to (2) (See [8]),

In the case in which (2) has no T-periodic solutions besides the ident-

ically zero, then there is a unique T-periodic solution for every f in Sp.

The following two lemmas follow trivially from the ones above, but we

prefer to state them explicitly for easier reference.

!
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!

(23)

is an element of 7., the____nfo___rr_ a e Ep the equation

_(t) = B y(t) + _T(o)N(t, xt) - _(_T(O)N(t, xt)) ,

!

!

where N(t, _) i__s_ functional of_ T i_.nnt, continuous with respect !
t__o (t, q_) and uniformly lipschitzian in @ i_.nnCH, has a unique solution i

|. * Bt
y (a, xt)c Sp such that _(y (xt)) = e a = w(a)(t).

To abbreviate we are going to write

e-Bt(_T(0)N(t, xt) - _(_T(0)N(t, xt)): f(xt)(t)

(24)

With this notation we have for the solution y*(a, xt) of (23):

T_
1

y*(a, xt)(t ) = eBt(a + /tof(Xt)(T)dT - T fofof(Xt)(x)d T d_) =

eBt(= a + g(t))

II
l
!

l

Here g(t) stands for the unique T-periodic function with zero mean

value whose derivative is f(xt)(t).

If we want to express g(t) as an integral we have to deal with its

components separately. In fact if the components of g are complex we have

!
!

!
to deal separately with the real and imaginary part for each component.

can choose _i ' _i in [0, T] , i = l,...,p,

We will have then that

t

(29) Re gi = f_if(xt )(x)d_ and

We

such that Re gi(_i) = Im gi(J]i)

t

Im gi(t) = /_if(xt)(x)dx

=o. |

!

!
have zero mean value. If

(_l'''"_p)' _i = _i + i_i '

denotes the vector

we will write

of Ep with components !

!

!



!

l

I
I

I
I

I

I
I
I

I

I
I
I

I
I

I

15-19

t

(26) g(t) = f_(xt)f(xt) (T)dx

for the vector function with components (25).

necessarily uniquely determined.

Observe that if we take a new xt

holds for some

[0, T]:

(27)

Notice that _(xt) is not

the following linear property

__(xt + x_) with components with real and imaginary parts in

t t

f(xt)(x)dx + f

_(xt) _(x_)

t

fCx_)(x)dx : _ fCx_)(x) + f(xt)Cx))dx.

_(xt+x _)

This follows because both terms of the first member have mean value

zero and so must have their sum, h(t)

f(x_)(t) and there exists _(x t + x_)

of (27) is equal to h(t).

Lemma 4.

If xt c Z,

unique

is in 7..

say. On the other hand h' (t) = f(x t) (t) +

in [0, T] such that the second member

then under the same hypothesis as above, there exists a

in Q(A) such that

t

vCt)_ + _ uCt-_)X Q NC_, x )d_
o

The main purpose of this section is to give conditions under which the

following equation has T-periodic solutions:

(28) k(t) = L(xt) + N(t, xt, _).

Here L is as before and N(t, _, _) fulfills the following conditions

in the region R × CH × [-_o, _o ] for some H, _o > 0 :

!
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i)

ii)

iii)

N(t, _, _) is continuous in (t, @, _), N(t, 0, 0) = 0,

N(t, _, _) is T-periodic in t,

IN(t, cp, _) - N(t, cp2, _)I _- q(l_l, H) llqoI -q_211 ,

_i' _2 in CH

nondecreasing in

for some continuous function 9 defined in [0,_o] X [0, Ho] ,

I_I and H and 9(0, 0) = 0.

The above conditions are enough to insure locally the existence and

uniqueness of solution for any _ in [-_o' _o ] and any initial condition

in CH at a time _ in R. If we do not leave CH for any t, then

the solution is defined for all t _ o, and if for some _ we have that

XT(_) = _ , xt(_) e CH for t e [0, T], then we can take xt(_ ) T-periodic

for every t in R. Notice here that it may happen that there is no unigue-

ness of solution going backwards in time. It may occur that two solutions

with different initial conditions at _ coincide after some t > o. For

instance the equation k = Ax

space C([-r, 0], En)_ r > O,

dition @ such that @(0) = 0

considered as a lag equation in the phase

is such that any solution with initial con-

will be zero for t _ O.

For any _, 0 < _ < i, and for any a ¢ E P

we denote by Z the following subset of Z:
a_H

fulfilling II_ eBtallZ _-(_H,

Bt

Za, H= Ixt e 7 : Q(xt) = ¢ e a, IIQ(xt)ll Z _-call,II xtllZ
_-H] ,

i.e. the set of those T-periodic solutions from R

leave the ball CH and such that their "average"

is contained in the smaller ball Cod_ .

We do not make explicit the choice of _,

into C which never

Bt
equals ¢ e a and

but we have to keep in mind

I
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that its value is fixed throughout the whole reasoning. Notice also that if

is independent of H our results will be valid for any H if _ is small enough.

Le_5.

There exist _l > O, H > 0 such that for every a £ EP with !l@eBtailZ

there exists a unique xt = xt(a , _) in Z satisfying the relations
-- a,H

(30) _(t) = By(t) + _(0) N(t, xt, _) -_(J(O)N(t, xt, _)),

t

(31) xtQ U(t)xoQ f U(t-T)X Q N(x, _)dx= + XT_
0

for every _ with I_I _-_i " Furthermorethis xt(a, _)

(a,_).

is continuous on

Proof:

We use the notation

(32)
n(xt, _)(t) = e-Bt(_T(o)N(t, xt, _) _ _(yT(o)N(t ' xt ' _)) ,

for the function of t

the right hand side of (32).

If we take zt in Z

uncoupled equations:

which results from substuting a given xt in Z in

and substitute it in (30) and (31) we obtain two

(33) _(t) = By(t) + eBtn(zt , _)(t)

I
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According to Lemma 3, for any a

T=periodic solution given by

in Ep equation (33) has a unique

(35)

t

y*(t, a, zt, _)= eBt(a + I n(zt, _)(T)dT)

_(Zt,_)

In a similar way, according to Lemma 4, equation (34) has a unique

periodic solution x_ given by

(36)
_ t+T

*Q -_)xoQN( z,xt (zt, _) = (I-U(T))-Is U(t + T T, _)d_.
t

Let's define the operator _(a, It) from Z into Z by

(37) _@m(a, _)(zt)= ¢y*(t, a, zt, _) + x_Q(zt, _) =

:_P(a, W)(zt)+_rQ(a, _)(zt).

We will show that for _, H small enough _r(a, _) maps Za, H into itself and

that it is a contraction. Consequently there is a unique element in Z
a,H

fixed under'(a, _).

Bt

The fact that _(_(a, _)(zt) ) = ¢ e a is obvious. We have to show

now that ll_r(a, _)(zt)ll Z _ H if zt is in Z and _ is sufficiently- a_H

small.

From Lemma i we have the estimate

I
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Bta41_ T
iiY*(t, a, zt, i_) - e _ K _ leBXn(zt , _)(T)Jdx ,

o

for some K independent of n.

II_Is_ we get the estimateSince ll_(f)JJ s -

II_PCa,_)(zt)ll z = II_y*(t, a, zt, _)llz -_

_-I1_eBtMlz + _ II ® IIII_II(_(I_i,H)H+ _(l_l )3-<

__b + kKCn(l_l,H)+ _(I_I )) --<

where K is continous, increasing and K(0) = O.

By Lemma 2 we have

llS_QCa,_)(zt)ll z __2X'Tll_il(n,(l_l,H)H+ _(i_l )3 =

= k'K'(nCI_I,H)H + _ (I_I))

It is sufficient to take

(n(I_I,H) + _(l_l))(Kk + K'k') -<H - b

to have ll_a,_)(zt)llz -_ H and hence _(a, _)(zt)

continuity of q and K we can choose p_ > 0, H1 > 0
Hi(i - _)

, and then _r(a, _) maps Za, Hlinto ZKk + K' k' a, HI

in Z Due to the
a_ H"

such that q(p[,H1)Hl+K(p_) _-<

for I_I< '= _i "

!



for

Z
a, H

(38)

15-24 I
We will now prove the contracting property of _r(a, _), namely that

I_I small enough then exists a 51 < i such that for zt and z_ in

the following holds:

I

!

ll__(a,l_)(zt) -_(a, _)(z_)llz-_5111zt - z_llz

According to (32) and (35) we have

ll__P(a,l_)(Zt)- _P(a, _)(_)llz-_

* IL
__ II¢IIll___(zt_z_)(n(zt_ I_)(_)- n(z_, l_)(_))dT s -_

I

I

i

I

I

__2 II_IIT n(l_l,H)ll_llll_t- z'mll_--n(l_l)k llzt - z'tlls I

Using (36 ) we get:
I

ll_(a,_)(zt)-_(a, _)(z_)ll_-

T

-_ K' f IN(_, zt, I_) - N(_, z[, l_)Id_ -_
O

I

I
I

__K'Tn(l_l,H)ll_t- zLllz. I

Tt TT I

We can choose _I > 0, H2 > 0 such that n(l_l,H2)(k + K'T) < 1 for IBI <= _i"

' : min [_, _'i} andBy choosing _l

all I_I_-_l"

H = min [HI, H2) we conclude that (38) holds for I

I

!
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Hence there is a unique element xt(a,_ _) of Z such thata

(39) xtCa , _): _(a, _)xt(a , _)

Fron the continuity of _(a, _) and from the contracting property it

follows that xt(a, _) is continuous on (a, _) .

Theorem 2

If fo___Ersom___se_articular (a, _) fulfilling the requirements of Lemma 5

it happens that xt(a , _), solution of (39), fulfills the relation

(40) {_(_TCo)N(t, xt(a, I_), t_))= 0 ,

then x(a, _) i__sa periodic solution of (28) and, conversely., if _t(W) ,

I_I < _i ' is a periodic solution of (28) i__nn7a, then _t (_) = xt(a' _)

for some a.

Proof:

The first part is obvious, and the second follows from the fact that

fulfills (28) for every t c R and it has to fulfill (30),(31) and

(40) according to the properties of _. The results follow from the unique-

ness of solution in Za, H of (30) and (31).

Equation (40) is generally known in the literature as "bifurcation

equation' or "determining equation".

Notice that if A is empty, i.e., (2) has as only T-periodic solution

the identically zero, then there is no relation (40) to fulfill and we conclude
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that equation (28) has a unique periodic solution xt(_) which depends con-

tinuously on _ and tends to 0 as _ _ O_ i.e._ xt(O ) = O.

The method to determine T-periodic orbits of (28) for small _ is then

to find xt(a , _) corresponding to (30), (31) for

[0, _], substitue this value in (40) and solve for

This method is too difficult to be practical.

I_I in some interval

a in terms of _.

The main difficulty deriving

from the fact that xt(a _ _) is generally not known explicitly. On the

_k) _), of T-periodicother hand for any (a, _) we can find a sequence x (a,

function converging uniformly to xt(a _ W) due to the fact that it is the

fixed point of a contracting mapping.

The sequence is given by:

Bt
(O)(a, _) = ¢ e a(41) xt

x(tk)(a, _)= _(a, _).(k-l)xt (a, _)

Bt

Notice that due to the form of _r(a, _) we have xt(a , O) = ¢ e a @

_(yT(0)N(t, xt(a,,_),_)) is differentiable with respect to aIf we

can apply the implicit function theorem and decide on the solvability of a

as a function of _ in equation (40).

In order to insure this differentiablity we will ask for further re-

striction on N.

n er_zla 6

I__f N(t, _, _) is as in Lemma 5 and moreover D N(t, _, _)

and is lipschitzian in _ with Lipschitz coefficient _(I _I,H),

exi st s

with the

I
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same properties as in Lemma 5, then the fixed point xt(a , _) of _(a, _)

and _(_T(o)N(t, xt(a , _), _)) ar__edifferentiable with respect to a fo___r

and H sufficiently small.

Remarks: The symbol D_ stands for the Fr@chet derivative and Daf , with f

a p-vector function, is a p X p matrix.

Notice that if N(t, _, _) = _N*(t, _), with N* and D_N* lipschitz-

Jan the conditions of the lemma are fulfilled.

If _, _ do not depend on H the results are valid independently of H.

Proof:

We use induction on the sequence (41).

Assuming that Dax[k)(a, _) exists we have:

We have Dax_O)(a, _) = Ce Bt.

t x?)Day(k+l)(a, _)(t) = eBt(I + f D a n( (a, _), _)(T)dT --
O

_ _i fT_tDan(X? )(a, _), _)(T)d_dt) ,

o O

1 t+T x_k)Dax[k+l)Q(a, _)= (I-U(T))- f U(t+T-_)Xo_aN(X , (a, _),_)dT •
t

[k)(a, _k) _) exist due to ourHere Dan (x _),_) and DaN (T, x (a, _),

hypothesis on N.

Notice that if the mean value of x is zero,

Dax[k)(a,_).of

Hence Dax(tk+l)(a,- _) exists and is continuous.

we can choose

so is the mean value

Moreover if IIeBtlls

small enough as to have ]IDax[k)(a,_)II_< M for all k.

< M,

This can be proved by induction taking into account the Lipschitz property

of D N(t, _, _) in the same way as we proved in Lemma 5 that _r(a, _) maps

I
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Z into Z
a,H a_H '

We check next that DaX_ k)(a, _) converges uniformly in Za to some

function matrix, which is precisely DaXt(a, _).

Notice that Z is a complete space and that the sequence of function

matrices Dax_k)(a, _) is a Cauchy sequence., as we show in the next paragraphs:

(42) LLDax?+l)(a,_)-Dax?)(a,_)ll_-

_(l_l,H)KI(LLx(k)-xllz+ 11x- x(k-l)llZ)+

x(k) D x(_-1)ll
+ _(I _I ,H)K211D a - a "

Here we are using as norms of the function matrices the supremum of

the norms of its columns considered as vectors

The constant KI depends on M and K2

on CH-

From (38) into (41) it follows that

on the upper bound of D N

llx?)(a, _)-xt(a, W)IIZ -_

k
51

i- 51

(0)( a, W)IIII x_l)( a, _)-x t Z

Denote by 52 the maximum of _(I_I ,H)K 1 and _(I_I, H)K 2

small enough to have 52 < i. Let 5 be the maximum of 51 and

it follows from (42):

and choose

52 . Then

llDax(tk+l)( a, _)- Dax[k)(a, _)II _-

W, H

I

I

I
I

I

I
I

I
I
I

I

I
I

I
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I
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5k 5k-i (_l)(a, _) - xt__5( + ) IIx CO)Ca,_)II+
i- 5 Z

+ _tl_x?)(_,_)._x(t_-_)(a,_)iI-_

-__(_+_-_ ÷...+_-_)ilx?)-x(t°)II_÷

+_kIIDx(tl)-D_(t°)ll-_

+ L)lix[I) (o)llz- xt

Here A k stands for (sk + 5k-l)/(l- 5), and L is a constant factor

relating the norms of x(1)t-x(O)ItZ and ilDaX[I)- Dax[O)ll . As we have that

k5 k converges, it follows that [Dax_tk)(a," _)] is a Cauchy sequence con-Z
k=l

verging to some element of 7 which is DaXt(a , _).

We are now in condition to state the following theorem which represents

the most practical result of the method.

Theorem 3

If N

abov__e, with

fulfills th___econditions required for Lemma 6 besides i),ii),iii)

_, _ depending only on I_I and if

Bt
(43) _(_T(o)N(t, ¢ e ao, 0)) = 0

Bt
det (D a _(yT(o)N(t, ¢ e 0))) _ 0a o ,

then there exists _i > 0 such that equation (28) ha___s_ T-periodic solution

I
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xt(a o, _)

Bt
¢ e a .

o

for I_I< _l " This solution is continuous in _ and xt(ao, O)=

Proof"

Bt = xt( O)Notice that ¢ e a° ao, . From the continunity of xt(a , _)

with respect to _ it follows_ by applying the implicit function theorem

to (40), that for a = a° and _ = 0 we can express a as a function of

such that a(O) = ao.

The solution xt(a , _) is given by x_(ao, _) = xt(a(_), _)-

Bt
Evidently x_(ao, O) = xt(ao, O) = ¢ e a , and this completes the

O

proof.

Remark: The lemma will still be true even if

since we used the property only to check that

Notice also that if H has a factor c

_, _ depend on H if a° = O,

Ce Bt O)ao : xt(ao,

we can take it out and consider

equations (43) divided by e and we obtain the desired results.

I
I

I
I
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III. The autonomous equation

We will apply here the results of the preceding section to some auton-

omous equations, in particular to those of the type

_(t) = L(zt) + N(zt, _) ,

L and N fulfilling the same conditions of the previous section.

In order to show how the things should be done in the real case we are

going to assume that L and N are real functionals over the space C =

C([-r, 0], Rn) and we look for real solutions of (44). The complex case is

alike but a little simpler because we can diagonalize B and with every eigen-

value we don't need the conjugate to be also an eigenvalue.

In the real case we can always choose ¢ (see section I) in such a

way that the matrix B is of the form

(45) B = diag (Oq, C1, ..., Cr) ,

0 n_

-ni_ 0

Here O stands for the q X q zero matrix, and n._ are the imaginary
q i

parts of the elements of A, n.
1

ranging in the positive integers. It may

happen that two n. have the same value for a finite number of indexes.
1

Contrasting with the nonautonomous case, we cannot expect to preserve

the period T = 2vf_ under perturbation. However we do expect that if some

I
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periodic zolution of (44) tends to some periodic solution of (2) as _ tends to

zero, then its period is going to tend to T.

We are going to look for periodic solutions of period T(_) = 2_/_(_),

with _(_) = _ + _, where we have to determine N in function of _ and

the particular solution of (2) to which we approach when _ tends to zero.

With the notation

(_)

c. (_(_)) =
1

B(_(_)) = diag(Oq, Cl(_(_)) , ...,Cr(_(,))),

0

-ni(_ + _q)
n.(_l0+_)>

we write (44) as

(47)

_(t) = B(_(O))w(t) + yT(o)N(¢w(t) + zQ, _)

z t = U(t)z + I U(t-7) (¢w(_) + zQ_ , _)d_
o

where w(t)= (4, zt).

If we apply the change of variables

(48) w(t) = eB(_(_))ty(t), ztQ = xtQ '

we obtain the systems

I
I
i
!

!

I
t

!
I
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I
I
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!
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_(t) = W e-B(_(_))tB(q)eB(_))tY(t) +

(_9)
+ e-B(_(_))t_T(0)N($eB(_(_))ty(t ) + xtQ, _),

xtQ= U(t)x Q
t _)d_

+ _ f U(t-_)Xo_(¢eB(_°(_))ty(_) + x ,
O

which is of the form

(5o)

_(t) = Ay(t) +

xQ = U(t)x Q +

F(t, y(t), xQ, la, q)

t

I U(t-_)XoQ G(_, Y('O, xQ"c' _' q)dT,
0

with A = 0 and F and G T(_)-periodic in t.
q

The functions F and G fulfill all of the conditions which are

necessary to apply Lemma 5 and Theorems 2 and 3, even if in this case (50)

does not correspond to any single equation like (28). Let us remark again

that by xt we are denoting a functional dependence of elements of C on

R and we don't require the existence of x(t) such that x(t + e) = xt(e ).

If we take

T(_)
(51) f(a, n, _) = I F(_, y(T, a, q, _), xQ(a, q, _), _, q)d_ ,

o

then we obtain that analogously as in Theorem 3

(se) f(ao' qo' O) = 0 , rank (D(a,q)f(ao, _o' 0)) = p

I
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are sufficient conditions to insure the possibility of expressing a

as functions of _.

In this case we can determine _ and

tions of _ and the other component of a.

and

p-i components of a as func-

The arbitrariness of one of the

components of a is due to the autonomy of the system_ in which a 1-parameter

family of periodic solutions corresponds to every closed orbit.

!

!

!

!

!

!
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IV. The stability of periodic solutions

The results of section II can also be used to determine the stability

characteristics of periodic solutions of functional differential equations.

Consider, for instance, the equation

(44) _(t) -- L(xt) + _N(xt, _) .

Let xt be a T(_)-periodic solution of (44). Take now z = x - x*

and we obtain

(53) {(t) = LCzt) + _(N(x_ + zt, _) - NCxt, _)) =

: L(zt) + _ L*(t, zt, _) + _o(iztl)-

Here the linear functional L* is the Fr_chet derivative of N(x* + _, _)

with respect to @ and is T(_)-periodic in t.

Equation (53) gives the behavior of the solutions of (44) with respect

to x*. If we are only interested in what happens in the vicinity of x* it

is sometimes enough to consider the first variational equation

(94) _(t) = L(zt) + _L*(t, zt, _)

In the noncritical cases the stability properties of x_ can be de-

cided by the knowledge of the characteristic exponents of (94). In fact, if

all the characteristic exponents, except one which is zero, have negative real

I
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* is asymptotically stable with asymptotic phase.parts, then xt

For the general theory of periodic linear functional differential

equations see Stokes [5] and Shimanov [6]. For the stability result mentioned

above see Stokes Ill].

We know that the characteristic multipliers of (54) are continuous in

and we know their value for _ = O, namely, they are given by the expontentials

of the roots of the characteristic equation (4).

* is going to be at all stable we have to require that thereHence, if xt

are no roots of (4) with positive real parts. In fact we will require that all

the characteristic values of (2) have negative real parts except those in A.

In order to prove asymptotic stability of x_ in this case it is sufficient

to show that for _ small enough all the elements of A(_) are in the left

hand plane with the exception of one which is at O.

The decomposition of (54) by A yields the following equation for the

orbits in P(A):

_(t) = Bw(t) + I_ _T(o)L*(t, (_w(t) + ztQ , i_) •

Notice now that L* is

w(t) = eB(C°(_))ty(t) , zQ = xtQ

T(_)-periodic and the change of variable

reduces it to the form

(55) _(t) = _(-e-B(_(_))tB(_)eB(C°(w))ty(t) +

+ e-B(a)(l_))t_T(o)L*(t, ceB(C°(l_))ty(t) + xtQ , _)).

From the work of Stokes and Shimanov we know that corresponding to

I

l
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every characteristic exponent T there exists a solution y(t) = eXtp(t),

tQ _t_Qx = e xt , where p(t) = p(t + T(_)). (Just like in the case with no lag).

Substituting this value of y(t) in (55) and taking T = _v we obtain

the following equation for p(t):

(56)

_(t) = -_vp(t) + _(-e -B(c°(_))tB(_)e B(_C_))tp(t) +

+ e-B(_oC_))t_T(o)L*( t, ¢eBC(°C_))tP(t) + _tQ, _3) •

This equation is of the type studied in section II, and we can find,

by means of the determinimg equations, what are the values of v for

which we have T(_)-periodic solutions of (56). These values are the

* is asymptotically stable if all but onecharacteristic exponents and x t

have negative real parts.

In most cases we don't know what x_ is exactly, but we know its

limit value when _ tends to zero, and this value is in general good enough

to determine the stability conditions for small values of _.

I
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V. An example

Consider the equation

(57) "_'(t) + a'_(t) + b2_(t) + kz(t-r) + _(z(t-r)) = 0 ,

in which a, b2, k, r and _ are positive constants and _ is a real function

of the real variable z such that, for any initial _ in C there is a

unique solution of (57) with initial value _ at zero for all positive t.

Equation (57) arises from a control system with a nonlinearity and a

delay of value r in the feedback.

For some values of the parameters and a special form of _ we are

going to determine the periodic solutions of (97) which tend to periodic

solutions of

(58) "_(t) + g¢(t) + b2_(t) + kv(t-r) = 0

as _ tends to zero.

The characteristic equation of (58) is given by

(59) k3 + ah2 + b2h + ke-rh = 0

Using procedures similar to the ones used in Chapter 13 of [12] we find

that for r=2, a = (64-v)/8_, b=l and k = a712_2/64, equation (59) has

exactly two purely imaginary roots + i_, _= V/8_ and that the rest of the

roots have negative real parts. (For the details see[13].) This means that

I
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P(A) is a plane in C where all the periodic orbits of (98) are contained.

We can write (98) as

O

(60) _(t) = _ dN(e)u(t + e),
-r

u a vector with components

Ul, u2, _ and

,Ke) =
o u(e) o )
o o _(e)

-ku(e+r) -b2u(e) -au(e)

where

u(t) =

0 for t < 0

i for t -_ 0

The matrix B and ¢ are given, respectively by

B and

cos _ e

-e sin _ e

2
-co cos _ e

\

sin _ e

cos _ e

2
-_ sin _ e

, 8 e [-r, O] .

The value of _T(o) turns out to be



I
_T(o) =

15-_0

o

p(l-co-)+ar_ aB+r_

r( i- (02 )-aC_co ar-occo

P

T

where (_ " 0.84, 13 " -0.3 O, ]," i.60 and 5 " 2.25.

We write now equation (57) as

0

(61) _(t) = f d_(e)x(t + 8) + f(xt) ,
-r

"rl(8) as

above, x a vector with components Xl, x2, _ and

f(xt) = -_ O)0

*(xl(t-2))

With the decomposition

Q
xt = Cy(t) + xt , y(t) = (Y, xt) ,

we obtain the equation

(62) _(t) : By(t) + _T(o)f(¢y(t) + xtQ) •

After the substitutions are made we obtain

(63)

w 2

_l(t) = _ y (t) - pP- @(-y2)(t) + (xQ(-2)) I)
5

r (xtQ(-2))_)_2(t)= _ Yl(t) - p _ _(-Y2)(t)+

I

I

I

I
I
I

I
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I

I
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These equations are in the form (47) and we can apply the procedure

I explained there. We are going to take _(x) = x - x3 in our example.

I We apply the transformation (48) with

I /cos_ t sin_ t 1

eB(_(_) )t =I _ "

I \-sin _ t cos_ t /

I We obtain for (_2) with ao = lal I the following,

I /a2 /

I f(a^_ _^_ O) = _ 1 - _ aI + _ a2

/ _ 1 / -_al-_a 2

!
/ 3 ya3 + 3 _ 3 + 3 _ 2 3 2 \

_ O •

3 3 3 3 3 2 3 2
I \ _al - _ Ta2 - _ _ala2 - _ala2/

I By taking a2 = O, which we can do due to the arbitrariness of one of

I the components of ao, this equation reduces to

I i 3 3

I _ _ai - _ Yal --0

i } 3

I 5TlaI + _ Ba I - _ _a I = 0 ,

I

L'
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2 4
which yields aI = O, _ undetermined and aI = _ with _ = O.

This means that our equation has two periodic solutions (letting aside

the phase) tending respectively to 0 and to the solution of G = Bu with

"radius" _ as _ tends to O.

We apply now the procedure of the previous section to compute approximately

the characteristic exponents of the first variational equation (54).

Bt B = B(_) and we haveWe take x = ¢ e a° ,

Y2(t) = (_(-2)eBtao)2 = alsin _ t.

The value of L*(t, zt) is given by

L*(t, zt) =

0

0

-_'(alsin _ t) zl(t-2 )

Decomposing zt by A in order to have

the change of coordinates w(t) = eB(_(_))ty(t),

(56) with

zt = ¢ w(t) + z_ and performing

z_ = x_ , we obtain equation

e-B(_(_))tyT(o)L*(t ' ceB(_(_))tp(t) ) =

i
= _ _'(alsin m t)(-sin m(_)t cos m(_)t)p(t) X

!

I# cos _(_)t - _ sin _(_)t

X
sin_(_)t+ _ cos_(_)t

el
i

!
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2 2
_'(a I sin uo t) = 1 - 5a_± sin _ t we obtain the determining equations

I i i 2

-K+-- y_9y(_ aI)

i i 9 ]2_+_(-i_+_a }

-_+ _ (i_ -_ _)I

i i 3 2

-K + -5 (3 Y - 8 Yal)"-

=0 .

As

matrix

2 4

aI = _ and B = 0,
we have K given by the eigenvalues of the

which are 0 and -r.

As r>0

-r 0

o

we conclude that our solution is asymptotically stable.

VI. Higher order approximations and example.

Consider again the equation

(28) _((t) = LCxt) + NCt, xt, _) ,

where N fulfills conditions i), ii) and iii) and moreover admits a large

enough number of derivatives with respect to its arguments.

By means of the successive approximations given by (41) we can obtain in

some cases the coefficients of the lower order terms in the expansion of

(_) _(_T(o)N(t, xt(a , _), _)= F(a, _)

in terms of a and _. Here (64) is the determining function for (28) and

xt(a , _) represents the unique fixed point defined by (39).

I
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We will show now how the knowledge of these terms may help us in determing

the existence and the order of magnitude of a perioic solution of (28). This

method may work even in the case in which the application of Theorem 3 has

failed because det(DaF (ao, O)) = O.

To simplify notation we will consider the scalar case with a ° = O, i.e.

we assume F(O, O) = O.

Suppose also that by means of (41) we have been able to obtain the lowest

order terms in a and _ for F(a, _). By this we mean that we can write

ml nl amP_ np) f(a, _) Vp(a,_) + f(a,_),(67) F(a, _) = _V(k am° + kla _ + ... + k + =
o p

where P(a, _) has been chosen in such a way that we take into account only the

terms lying in the side of steepest slope of the Newton polygon, i.e., the terms

for which vnj/(mo-mj) is a minimum. Let

nj j = O, p(66) k

m - m. ' "'" "
o j

If we now substitute

(67) a = _ k

we obtain

f(a, _)where

If we want to find _(_) for

we apply the implicit function theorem.

we have to do is solve for a in

V + km o
m

_P) + f(< _):F(_, _) = _ (k + ... + kp

v+km o= _ _(_) + f(% _).

is o(_V+kmo) for a fixed _.

sufficiently small such that _(_(_), W) = 0

Owing to the form of F(a, _) what

I
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}(_)_o

at these values.

If we find such a value of _ we get, by using (67), that there exists

a solution of (28) which tends to 0 llke

k
(69) a(B) = E

as B tends to zero.

In the case in which F(ao, 0) = 0 for a° different from zero the

treatment is analogous 2 but expanding in terms of a - a . The same will
o

apply for periodic solutions with amplitudes tending to _ when B tends to

zero. This corresponds to the case of negative k. It can be treated by ex-

panding in terms of the recipocal of a.

We present now an example due to J. K. Hale in which the above technique

is utilized.

Consider

(66)
7r

_(t) = (_ +B)x(t-1)(1-x2(t))

The unperturbed equation and its adjoint are given by

7r u(t-l)_(t)=

v(s+l)_(s)=

and

The bases for the generalized eigenvalues $ and • can be chosen as:

= (_i'_2),q_l(°)= sin_ e, _2(o)= cos_ o, o c[-l,o]

I
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*l- g *2
_T 2

_---g
v Tr

g 'i + *2

2 i

v - 2
7[

1+17-

7/" 7/"
, _l(e) = sin _ e, _2(8) = cos _ e, e e [0, 1]

This choice has been made in order to have (_, ¢) = I, where here

o
77

(_,_) = _(o)_(o)- _ f
-1

_(_ + 1)_(_)d_

Equation (66) can then be written, by using

xt = Cy(t) + xtQ, as

(67)

I y = By + _T(o)N(xt, _)
t Q

xtQ = U(t)_ Q + IoU(t--T)X ° N(x , _)dT

where

h
_T(o) = / _v/2

\ 2/v 2

x(t_l)x2(t) .N(x t, _) = - _x(t-1)(1-x2(t)) + _

7r
Let now o_(_) = - _ + _ and

B(_(_ )) =

0

7[
-_- _

---2+0 _

We preform the change ef variables

el
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(_)

y = eB(C°C_))tz in (67) and we obtain:

_(t) = - _e-B(a_))tB(6)e BCa_))tz(t) + e -B(a_))twTCO)N(xt, _) .

Here we have

N(xt, _)= _(z I cos _t + z2 sin_t + xtQ(-1))(1-(-z I sin _t + z2 cos _t + xQt(o)) 2) +

t_ t_+ _ (-z I cos _t -z 2 sin _t + x (-1))(-z I sin _t + z2 cos cot + x (0)) 2 .

As the system is autonomous we can altogether forget about z2, say_ and

we obtain for a vector with components (a, O) and for 6 the determining

equations for _ = 0

$a 3
2

v -Tra 3
g

--0

The only solutions is a = O_ but for this value the Jacobian with respect

to a and 6 vanishes.

We look then for the lowest order terms.

In our determining equations we have terms like _a_ _xtQ, a3j a2(xQ) 2

a( xQ)3_ etc.

We check first the order of xQ . If xt is periodic we have the representation

t

xtQ = f U(t-x)X Q N(x _ _)dx
--C@

As N(x, _)

the order of x_ @

3
a .

has _a as its lowest order term it turns out that this is

This means that the only terms to be considered are _a and

I
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Taking these into account we obtain the determining equations:

a3
2 a_=O2

v 16 2v

a3 + i a_ = 0
_8a V2 8 V2

Hence

a=_ , _=0

We have for the Jacobian with respect to a and 8:

3_2a 2 w_ _ __ 3W'a____22 __
16v 2 2v 2 8V 2 + v

0 _a

which differs from zero for the value obtained for a.

We have then a solution close to

xt0eB   t( ):o
If we substitute x by _x in equations (66) and we get a problem which

is solvable in the first approximation:

(70)
T[

x(t) = - (_ + _)x(t-1)(1- _x2(t))

The bifurcation equations turn out to be

I
I
I
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Co)Ii i--_ -_&

+ -_
l_a v _- 3

-za +a/

=0

Hence a = 0 is a solution, the same as a =__8 . For this last value

the jacobian differs from zero and this proves that for _ small enough there

is a periodic solution of (70) tending to (69) with a =_$ , or, what it is

the same, a solution of (66) tending to (69).
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SOMESTABILITYTHEOREMSFORORDINARYDIFFERENCEEQUATIONS

by
JamesHurt

LaSalle [1,2,3] and others have developed a generalization

of the "second method" of Liapunov which utilizes certain invariance

properties of solutions of ordinary differential equations. In-

variance properties of solutions of ordinary difference equations

are utilized here to develop stability theorems similar to those

in LaSalle [1]. As illustrations of the application of these theorems,

a region of convergence is derived for the Newton-Raphsonand

Secant iteration methods. A modification of one of these theorems

is given and applied to study the effect of round-off errors in

the Newton-Raphsonand Gauss-Seidel iteration methods.

I. INTRODUCTION. An ordinary difference equation is an equation of

the type given in (i),

x(k÷l)--f(k,x(k)) (i)

where each x and f(k,x) are elements of X, an n-dimensional

vector space. Since the notation used in (1) can become very

clumsy, the somewhat neater E notation is used. If E is defined

as the operator where Ex(k) = x(k+l), then equLtion (i) can be

el
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written as in (i*)

Ex = f(k,x) (l*)

where the arguments of x and Ex are understood to be k.

A function x(k;ko, Xo) is called a solution of the

difference equation (1) if it satisfies the following three

conditions.

k g ka) x(k;ko, Xo) is defined for ko - - o

some integer K > 0.

+ K for

b) X(ko;ko, Xo) = Xo, the initial vector.

c_, x(k+l;ko,Xo_,, = f(k,x(k;ko,Xo)).... for ko g- k g- ko + K-I.

Hereafter, it is assumed that a solution to (1) exists

and is unique for all k a k and that this solution is continuous
o

in the initial vector xo. More specifically, if Ixn] is a

x as n _ _, then the solutionssequence of n-vectors with xn o

through x converge to the solution through x :
n o

x(k;ko, Xn) -_x(k;ko, Xo) as n -_

For all k on any compact interval, this convergence is assumed

to be uniform.

For any n-vector x, let Ixl denote any vector norm of

x. For any non-empty set of n-vectors A, denote the distance from

I
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x .to A by d(x,A).

d(x,A) = inf [Ix-Yl : Y 6 A].

Introduce the vector _ to X and define d(x,_) --Ixl -I. Let

A* = A U [_] and d(x,A*) = min [d(x,A), d(x,_)].

A point p e X is a positive limit point of x(k) if

there is a sequence [kn] with kn+ 1 > kn -+ _, and X(kn) -_ p

as n -+_. The union of all the positive limit points of x(k)

is the positive limit set of x(k).

II. THE GENERAL STABILITY THEOREM. Let G be any set in the vector

space X. G may be unbounded. Let V(k,x) and W(x) be real

valued functions defined for all k _- k and all x in G. If
o

V(k,x) and W(x) are continuous in x, V(k,x) is bounded below,

and

AV(k,x) : V( k+l, f(k, x) )-V( k, x) g- - W(x) _- 0

for all k _- k and all x in G, then V is called a Liapunov
o

function for (i) on G. Let _ be the closure of G, including

if G is unbounded, and define the set A by (2).

A={x c_: W(x) =0] (2)
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The following result is the difference analog to Theorem

1 in LaSalle Ill.

THEOREM i. If there exists a Liapunov function V for (i) on

then each solution of (1) which remains in G for all k a k
O

approaches the set A* = A U [_] as k _.

G,

PROOF: Let x(k) be a solution to (i) which remains in G for

all k a k . Then, by assumption, V(k,x(k)) is a monotone non-
o

increasing function which is bounded from below. Hence, V(k,x(k))

must approach a limit as k _ _, and W(x(k)) must approach zero

as k _ _. From the definition of A* and the continuity of

W(x), we get d(x(k),A*)_0 as k _. Note that if G is

unbounded and there exists a sequence [Xn] such that Xn¢ G,

IXnl _, and W(Xn) _0 as n _ then it is possible to have

an unbounded solution under the conditions of the theorem. If

G is bounded or if W(x) is bounded away from zero for all

sufficiently large x, then all solutions which remain in G are

bounded and approach a closed, bounded set contained in A as

k _.

This theorem can be used to easily prove all of the

usual Liapunov stability theorems. See, for example, Hahn [1]

and Kalman and Bertram [1]. For example, if G is the entire

space X and W(x) is positive definite, then A = [o] and

all solutions approach the origin as k _. However, as the

S
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following example shows, other considerations can be used to

determine if a solution x(k) will remain in G. The difference

equation is given in equation (3).

-2
Ex = x for x > 0 (3)

Let the set G be the set of positive numbers. Then,

if x > O, we get Ex > O from equation (3) and all solutions

which start in G remain in G. The function V(k,x) = V(x)

v(x)--x
l+x 2

is a Liapunov function for (3) on G since V(x) -_ O and

aV(x)=
-2

X x

l+x -_ l+x 2

x(1-x)(x3-1)---W(x)_-0
(l+x2)(l+x_)

We have W(x) = 0 when x = O, x = i, and W(x) _0 as x _.

Thus, the set A* is the set [O,l,_]. Each solution with x° > 0

approaches A* as k _ _. A look at the solutions to (3)

x(k)--x(-2)k
0

shows that this is exactly the case. If x ° = l, then x(k) = 1

for all k. If x ° < i, then x(k) -* O for even k and x(k) -*

for odd k.
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Quite often the set G can be constructed so that all

solutions which start in some smaller set G 1 remain in G. One

such case is covered in the following corollary.

COROLLARY i. Let u(x) and v(x) be continuous real-valued

functions. Let V(k,x) be such that

u(x)<-v(k,x)<_-v(x)

for all k _ ko. For some _, define the sets G = G(_) and

G1 --Ol(n) as

If

which start in

PROOF: Let

Then

V is a Liapunov function for (i) on G(_), then all solutions

GI(_) remain in G(_) and approach A as k _ _.

x(k) be a solution of (I) with X(ko) _ GI(_).

u(x(k)) _-V(k,x(k)) -_V(ko, X(ko) ) _-v(x(ko) ) <

for all k a ko, implying that x(k) ¢ G(_) for all k _ k .
0

Theorem 1 and Corollary 1 give sufficient conditons for

the positive limit set of a solution x(k) to be contained in A.
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There is an art to finding the best V, W, u, and v, i.e., the

functions V, W, u, and v which give the largest G, the largest

GI, and the smallest A. Often more information about the behavior

of the solutions can be obtained by considering several different

Liapunov functions and combining the results from each.

The following example is taken from Vidal and Laurent

[ i]. The sampled control systems covered in this paper are

described by the difference equation (4).

Ex = M(k,x)x (4)

where M(k,x) is a matrix. For any vector norm, I xl, define

the norm of the matrix M(k,x) by

IM(k,x)l = min [b : IM(k,x)yl _- bly I for all y _ O]

Then clearly, IM(k,x)xl _-IM(k,x)llx I . For the difference equation

(4), try the Liapunov function V(k,x) = Ixl. Then

_v(k,x)--IM(k,x)xl- ixl

_-(IM(k,x)i- i)Ixl

Let u(x) = v(x) = V(k,x) : Ixl, then

For all x in G(0) and all k _- k
o

Gi(_)= G(n) = {x:Ixl< _).

let IM(k,x)l& a(x) and
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W(x) = +(l-a(x))Ixl. Then we have

_V(k,x) _--W(x).

If a(x) < i for all x in G(_), then -W(x) _-O, the set A

is the origin and possibly something on the boundary of G(G).

Since V(k,x(k)) is a non-increasing function of k and the

boundary of G(_) is a level surface of V(k,x), the solutions

cannot approach the boundary of G(_). Hence, all solutions which

start in G(_) remain in G(_) and approach the origin as k _ _.

The set G(_) is called a domain of stability for the system (4).

The best G(_) is chosen by picking _ as large as possible

without violating the inequality a(x) < 1 for all x in G(_).

Various choices for the vector norm will result in

various a(x) and various domains of stability. Since each is

sufficient, the union of all these domains of stability is also

a domain of stability.

If M(k,O) is a constant matrix, independent of k 3

and the spectral radius of M(k,0) is less than one, then there

is a vector norm such that a(x) is continuous in x and a(O) < i,

indicating that there is a non-empty domain of stability (see the

Appendix).

The following example illustrates that the results

obtained in Theorem 1 and Corollary 1 are the best possible with-

I
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out further assumptions. The difference equation is (5).

Ex=y

2
Ey = a x + p(k)y

(5)

where 0 < a < 1 and 0 < 8 _ p(t) < l-a 2. If p(k) = p, a

constant 3 then the conditons for stability are satisfied and all

solutions approach the origin as k _ _.

Try the Liapunov function

22 2
Vtk, x,y} = a x + y

Then

AV(k,x,y): -a2p(k)(x-y)2 + a2(p(k)-(1-a2))x2

+ (p(k)+l)(p(k)-(1-a2))y2

-_-a2p(k)(x-y)2 _--a28(x-y)2 = -W(x,y)_-0 .

From Corollary l_ we see that all solutions are bounded and

as k -*_.

l_a 2
p(k) --

l+a k+l

for all k _- O, then this p(k) satisfies the conditions given above and
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one solution of the difference equation (5) is

k
x(k) = 1 ÷ a -_i as k-_

k+l
y(k) = i + a _i as k-_

Theresults obtained are the best possible. Notice, however,

that this p(k) approaches l-a 2 as k _ _. If, instead of

p(k) < l-a 2, we knew that p(k) < l-a 2- - E for some E > O, then

we get

2 2 2
AV(k,x,y) -_ -a25(x-y)2-a cx - (i+5)¢ y = -Wl(X,y ) -_ 0

and the only point where Wl(X,y ) = 0 is x = y = O. In this

case, all solutions approach the origin as k _ _.

III. AUTONOMOUS DIFFERENCE EQUATIONS. If the function f( k, x)

in (1) is independent of k, then the difference equation is said

to be autonomous, as in equation (6).

Ex = r(x). (6)

Just as is the case for autonomous differential equations_ solutions

to (6) are essentially independent of k so we assume k = 0
o o

and write the solution as x(k;Xo). A function x*(k) is said

I
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to be a solution for (6) on (-=,=) if, for any k
O

we have for all k _ k
0

in (__,oo),

x(k-ko;X*(ko) ) : x*(k).

A set B is an invariant set of (6) if x _B implies that there
O

is a solution x*(k) for (6) on (-=,=) such that x*(k)c B for

all k and x*(O) X
o

i. The positive limit set B of any bounded soltuion of (6)

is a nonempty, compact, invariant set of (6).

PROOF: Let x(k) be a bounded solution of (6) and B its

positive limit set. For each p ¢ B, there is a monotone sequence

kn _= and X(kn) _p as n _.of integers [ ] such that kn

Then each function Yn(k) = x(k+kn) is a solution of (6) with

Yn(O) -_ p as n _ _. From continuity in the initial conditions,

these functions approach the solution x(k;p) as n _ _. By

extending each function Yn(k) to -kn, we can extend the solution

x(k;p) to -=. The simultaneous convergence to x(k;p) and B

implies that x(k;p) 6 B for all k, and so B is an invariant

set. The fact that B is nonempty and compact is obtained from

the definition of a positive limit set and the boundedness of x(k).

For an autonomous equation, Theorem 1 can be strengthened

as follows.
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THEOREM 2. If there exists a Liapunov function

some set G, then each solution x(k) which remains in G is

either unbounded or approaches some invariant set contained in

A as k -*_.

VCx) for (6) on

PROOF. From Theorem i, x(k)-_A U [_] as k-_. If x(k) is

unbounded, then Lemma 1 does not hold. If x(k) is bounded, then

its positive limit set is an invariant set.

If the set M is defined as the union of all the in-

variant sets contained in A, then x(k) -_M as k-_ _ whenever

x(k) remains in G and is bounded. The set M may be consider-

ably smaller than the set A. Under the conditions of Theorem 2,

an unbounded solution can exist only if G is unbounded and there

is a sequence [Xn] , Xn¢ G, x n -_ and ZiV(Xn) -_0 as n _.

Corollary 1 can be restated in a similar manner.

COROLLARY 2. If, in Theorem 2, the set G is of the form

a ---a(n) = [x :v(x)< n}

for some _ > O, then all solutions which start in G remain in

G and approach M as k _.

This corollary can be used to obtain regions of convergence

for various iterative methods which can be described by an autonomous

difference equation. A region of convergence is a set G C X such

!
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that, if x(O) ¢ G, then x(k) g G for all k _- 0 and x(k)

approaches the desired vector as k _ _. The largest region of

convergence is the union of all regions of convergence. The

Secant and Newton-Raphson methods are treated as examples. For

a derivation and discussion of these methods see, for example,

Traub [i] or Ostrowski [i].

The Secant method for finding a root of f(z) = O (f(z)

and z are complex numbers) is given by assuming values for z1

and z2, then forming the sequence [Zk] by repeated application

of equation (7).

(Zk+l-Zk)f(Zk+l)

Zk+ 2 = Zk+ I -- (7)

f(Zk+l)--f(zk )

We assume that, for every k, Zk+ 1 _ zk and f(Zk+l) _ f(zk) ,

so this iteration formula is well defined for all k. Let _ be

the desired root of f(z) = 0 and let

f((_ + e) = f'((_)e + g((_,e)e 2 .

Then, letting zk = _ + ek for each k, equation (7) becomes

ek+ 2 = M(G, ek, ek+l) ekek+ 1

where
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M(_, ek, ek+l) :

g(G, ek+ I) ek+l- g(G, ek) ek

f(C_+ek+ 1) - f(CZ+ek)

With the assumption that _ is a simple root of f(z) = 0 and

g(_,e) is continuous and bounded in e, then M(_,ek, ek+l) is

continuous and bounded for ek, ek+ 1 small enough.

The difference equation (8) is obtained by letting

xi(k ) = ek and x2(k ) = ek+ I.

Ex I = x 2

Ex 2 = M(_,Xl, X2)XlX 2

(8)

Consider the Liapunov function Vq(Xl, X2) = Ixllq

some q _- i. Then

+ Ix21q for

_Vq(Xl,X2) = (ll M(mXl,X2)x21q)lXllq

and _Vq(Xl,Xp _0 if IM(_,Xl,X2)X21_ 1. Let Gq(_)be the

set Gq(_) = [(Xl, X2) : (IXl lq + Ix21q) I/q < _]. Since x2 = 0

implies IM(_,Xl, X2)X21 = 0 < i, there is some _ > 0 such that

IM(g_,Xl, X2)X21 -_ 1 for all (Xl, X2) in Gq(_). From Corollary 2,

this Gq(_) is a region of convergence for the Secant method.

If the initial guesses zI and z2 are such that (Xl, X2)¢ Gq(_)

for some q, then (Xl, X2) will remain in Gq(_) for all k and

approach an invariant set contained in the set

I
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A = [(Xl, X2) ¢ _q(_) : x I = 0]. The only invariant set of equation

(8) with xI = 0 is the origin x I = x2 = 0, so we get (Xl, X2)-_ (0,0)

as k -_ _, and the method converges.

If, for lel -g _o' we get

If'(G+e)l-_ F , Ig(G,e)l _-G

then we get that IM(G, Xl, X2)X21 < 1 if Ix21 < F/G. Thus,

can be taken as the smaller of _o and F/G. For the particular

2 2
equation f(z) = z -G , we get If'(G+e)l _- 21(xI-2_o and Ig(G,e)l = 1

2

for l el < _o" In this case, we can choose _ = _o = _ IGI"

It should be noted that the set Gq(_), or even the union

of these sets for all q -_ i, is not always the largest region of

2 2
convergence. For the simple equation f(z) = z -G , almost any

choice of Zl, z2, provided only that zI _ z2 and f(zl) _ f(z2) ,

will lead to a sequence which will converge either to +G or to

-G. However, if zI and z2 are in the region defined by Gq(_),

then not only will the sequence converge to G but this convergence

will be uniform in the sense that IZk-Gl q + IZk+l-Gl q will be a

decreasing function of k.

Corollary 2 can also be used to find a region of con-

vergence for the Newton-Raphson method. The Newton-Raphson method

for finding a root of f(z) = 0 (f(z) and z are n-vectors) is

given by assuming a value for Zl, then forming the sequence [zk]
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by repeated application of equation (9).

Zk+ I zk [8f-- - Tz (zk)]-lf(zk) (9)

_f

where _-_7(Zk) is the matrix of partial derivatives of f. Here,

8f

we assume that [_z(Zk)] always has an inverse. If the desired

root is a simple root, then this is the case. By letting G be

the desired root, expanding f(G+e) as

f(Cz+e) = [_zf(_)]e + fo(e)

and letting zk = G+ek, then the difference equation becomes

ek+ 1 = +Ml(ek)[M2(ek)e k - fo(e k)]

where Ml(e ) = [_f'cz+e)] -I _zf_z _ and _(e) = [ (_+e) - ((z)]. Let

lel be some vector norm (see the Appendix). If (_ is a simple

root of f(z) = 0 and f is twice continuously differentiable

at z = 5, then, for each q > 0, there exists a positive constant

k(_) such that, for all e with

IMl(e)(_(e)e-fo(e)) I -_k(n)lel2.

we get

lel< _, we have

Then, letting V(e) -- Iel,

AV(e) g_- (1-k(n)lel)lel

I
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and AV(e) -_ 0 if k(_)l eI _- i. Using Corollary 2, we get a

region of convergence G(_o) = [z : I z-gzl < 110] where no =

1

min(_,k-_n_ ). We can choose _ so as to maximize _o' thus obtaining

the best region of convergence obtainable with this Liapunov

function.

For the case where z and f(z) are complex numbers,

if there is some F > 0 such that Ifo(e)l _-F Iel 2 for all z

2 If'((_)l then we can get
In-el _- _, some _ _-_ F '

where

k(_)= 3_ F
2 If'(_)i-F_

and the best (with this

G( No ) where

k(_)) region of convergence is given by

2 if'(_)i
_o =_ F

2 2 2

For the simple case f(z) = z -5 , we get no = _I_I-

However, a sharper estimate may be used for k(_) which results

_I_I This latter case is the best possible. Any discin _o =

centered at G with radius larger than _a I will have points

inside the disc which will map outside the disc on the next iteration

and AV(x) is positive for some values of x.

It should be noted that the region of convergence G(_o)

is not always the largest region of convergence. For the simple
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2 2

equation f(z) = z -_ , any initial guess zI _ 0 will lead to

a sequence [zk} which will converge either to +a or to -a.

IV.FERIODIC DIFFERENCE EQUATIONS. If, in the difference equation

(1), f(k,x) is T-periodic for some integer T _- i and fixed x,

i.e., f(k+T,x) = f(k,x) for all k,x, then the difference equation

is said to be a T-periodic difference equation. A function x*(k)

is said to be a solution for (1) o__nn(-_,_) if, for any k ° in

(-_,_), we have for all k _- k
o

x(k;ko,x*(ko)) : x*(k)

A set B is an invariant set of (i) if x c B implies that there
o

is a k° and a solution x*(k) for (i) on (-_,_) such that

x*(ko) : x ° and x*(k)e B for all k.

LEMMA 2. Let x(k) be a solution of (i) that is bounded for all

k _ k . Then the positive limit set of x(k) is an invariant
o

set of (1).

PROOF: This lemma is proven in a manner very similar to that

used in Lemma 1. The k used in the definition of an invariant
o

set is obtained in the following manner. If [kn] is a monotone

sequence such that X(kn) _ p ¢ B, the positive limit set of x(k),

then there is a sequence of integers [Mn] such that kn-MnT ¢ [O,T)

for all n. The set [O,T)

I
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consists of a finite number of integers, so at least one of these

= k -M T for an infinite number
integers, ko, must satisfy k° n n

of n' s. The solution x(k;ko, P) is the shown to be the limit

of the functions Yn(k) = x(k+kn) and is in B for all k, thus

demonstrating that B is an invariant set of (1).

Theorem 1 can now be restated for T-periodic difference

equations.

THEOREM 5. Let V(k,x) be a T-periodic, continuous function which

is bounded below for all x in some set G. For k _- k and x
O

in G, let AV(k,x) g-0 and define the set A by

A = [(k,x) : Z_V(k,x) = 0, x _ _]. Let M be the union of all

solutions x(k) of (i) such that (k,x(k))c A for all k. Then

each solution of (i) which remains bounded and in G for all

k _- k approaches some invariant set contained in M as k _ _.
o

PROOF. The function V(k,x(k)) is non-increasing and bounded

below, hence AV(k,x(k)) -_ 0 as k -_ _. The continuity of V

and AV implies that d((k,x(k)),A)-_0 as k-*_. Since x(k)

must approach an invariant set as k _ _ it must approach M as

k_.

An unbounded solution is possible under the conditions

of Theorem 3 only if G is unbounded and there exists a sequence

[(kn, Xn) ] with IXnl-_, and AV(kn, Xn)-_0 as n-_. If G

is bounded or if AV(k,x) is bounded away from zero for all
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sufficiently large x, then all solutions of (i) which remain in

G are bounded and approach M as k _ _.

V. ASYMPTOTICALLY AUTONOMOUS DIFFERENCE EQUATIONS. If the

difference equation (1) can be written in the form of equation

(i0)

Ex --H(x) + ;(k,x) (lO)

where F(k,x) _ 0 as k _ _ uniformly for all x in any compact

set, the difference equation is said to be an asymptotically

autonomous difference equation. With each asymptotically autonomous

difference equation, (l0), there is the associated autonomous

difference equation (ll).

Ex : H(x) (ll)

LEMMA 3. The positive limit set of any bounded solution of the

asymptotically autonomous difference equation (lO) is an invariant

set of the autonomous difference equation (ll).

This lemma is proven in the same manner as Lemma 1.

Theorem 1 could now be restated in a manner similar to Theorem 2,

but the following, more general statement has proven more useful

in its applications.
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THEOREM 4. If a solution x(k) of the difference equation (i)

approaches a closed, bounded set A as k _, and if x(k) is

also a solution of the as.ymptotically autonomous difference equa-

tion (lO), then it approaches the largest invariant set of (ll)

contained in A as k _=.

As an example of the application of Theorem 4, consider

the difference equation (12),

Ex : cx - s(1-p(k))y

Ey = sx + c(1-p(k))y

(]_2)

where c --cos _, s = sin _, 0 < m < 27r, 0 < 5 _- p(k) _- 2-¢ < 2.

2 2
With the Liapunov function V(x,y) = x +y , we get

= _ y2AV(x,y) -p(k)(2-p(k))Y 2 _ -5 c _- 0

Applying Corollary l, we get that all solutions for (12) are

bounded and y(k) -_0 as k -_=.

Let Xl(k), Yl(k) be a solution for (12), then Yl(k)

is bounded and approaches 0 as k -_ _. Also, Xl(k), Yl(k) is

a solution of the difference equation (13).

Ex = cx- sy + p(k)Yl(_)

Ey = sx + cy- p(k)Yl(k)

(13)
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This difference equation is asymptotically autonomous to the

difference equation (14).

Ex = cx - sy

Ey = sx + cy

(14)

The only invariant set of (14) with y = 0 is the origin x=y=O

since O < _ < 2_. By Theorem 4, all solutions of (12) approach

this invariant set, the origin, as k _ _.

VI. PRACTICAL STABILITY. For many difference equations a solution

is considered a stable solution if it enters and remains in a

sufficiently small set. For example, under the proper conditions

all solutions of the Newton-Raphson equation (9) approach the

desired solution as k _. But, when the effects of round-off

errors are considered this is no longer the case. However, if

all the solutions become and remain close to the desired solution,

then the method is judged to be satisfactory. This type of stability

is called practical stability. The following theorem and corollaries

are concerned with practical stability for the difference equation

(15).

_x = f(_,x) (15)

THEOREM 5. Given a set G C X, possibly unbounded. Let V(x)

and W(x) be continuous, real valued functions defined on G

I
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and such that, for all k and all x in G_

(i) v(x)__o

(ii) AV(k,x)= V(f(k,x))-V(x) -_W(x)_-a

for some constant a _ O. Let the set S be the set

s --[x c_: w(x)_-o}

Let b = sup [V(x) : x _ S) and the set A be the set

A = {x c5 : V(x) -_b + a}

Then any solution x(k) which remains in G and enters A

when k = kI remains in A for all k _- k1.

The properties of S, A, and V(x) are used to show that,

if x(k) is in A, then x(k+l) is in A. The theorem follows

by induction.

COROLLARY 3.

x(k) of (15) which remains in

of steps.

then

If 5 = sup {-W(x) : x ¢ G-A] > O, then each solution

G enters A in a finite number

If x(k) does not enter A in a finite number of steps,

k-1

V(x(k)) --V(x(%)) + Zn_k aV(k,x(n))
0

_-v(x(ko)) - (k-%)8
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and V(x(k)) -_-_ as k -¢_, a contradiction since V(x) -_ b+a

for all x in G-A.

COROLLARY 4. If G is of the form G : G(_) = [x : V(x) < _]

and the conditons of Theorem 5 and Corollary 3 are satisfied,

then all solutions which start in G remain in G and enter A

in a finite number of steps.

Corollary 4 can be used to study the effects of round-

off errors in the Newton-Raphson method. Without errors, the

Newton-Raphson method is given by equation (9). With errors, this

method is given by equation (16).

_f -i

Zk+ 1 : zk - [_z(Zk)] f(z k) + h(k, Zk) (16)

where all that is known about the error term h(k, Zk) is its upper

bound, say lh(k, Zk) I _ ¢ for some vector norm and some _ > O.

A value for ¢ can be obtained by assuming that zk is known

exactly and studying the steps of the computations in great detail

to estimate the error in Zk+ 1. This error term includes the effects

of errors in the functions f(z) and __f(z), errors in evaluating

f(z) and [_zf z)] -1, and any other errors that may be encountered.

Often it is not very difficult to find an estimate for c, the

problem is to determine the net effect of the term h(k,z) on the

positive limit set of a solution z(k).

I
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With the same assumptions on f(z) and the same expansions

used before, the difference equation (16) becomes

ek+ 1 = MI(ek) [M2(ek) ek-fo(ek) ] + hl(k, ek)

With V(e) = lel, we get

AV(e) -_ -(l-k(_)lel)le I + ¢ = + W(e) -g ¢

The set S becomes

S = [e : W(e) a_ 0] -- [e : lel _-b}

where

b(_) b i- 41-4k(_)_'__ + 2k(_)c2
2k(n)

provided that

where and the iterations may not converge. The set

by

A = [e ".V(e) -gb + ¢] : [e : l el _-b + c]

4k(_)E < i. If 4k(_)c a_ i, then W(e) _- 0 every-

A is defined

We note that, for _ small enough, we have

WCe)_ -(b- kC_)Cb+c)2) : -_ .

el
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From Corollary 4, we have, if 8 _ 0, then all solutions which

start in G(_o) remain in G(_o) , enter A in a finite number

of interations, and remain in A thereafter.

quite the same as before. We must choose no

4k(_o)¢ < l, and b(_o)-k(_o)(b(_o)+¢) 2 _ O.

Here, _o is not

such that k(_o )_o -_ i,

If _i is the

smallest positive solution of _Ik(_l ) = i, then choosing _o < _i

will satisfy both k(_o)_o < 1 and b-k(_o)(b+¢) 2 _ O. The

condition 4k(_o)¢ < 1 becomes a condition on the precision or

accuracy required in the computations.

Thus one effect of round-off errors is to reduce the

region of convergence. Another effect of round-off errors is

that the error of each zk cannot generally be reduced much below

the value b+¢ 2c + 2k(_)_ 2= + ... no matter how many iterations

are preformed. The value b+_ is called the ultimate accuracy

obtainable with round-off errors. Notice that, for small ¢,

the ultimate accuracy is approximately 2¢, or about twice the

round-off errors committed at each step.

If the ultimate accuracy is large, then the method is

judged to be a poor since the effect of small round-off errors is

a large error in the computed solution. If the ultimate accuracy

is small, then the method is judged to be a good one since small

round-off errors have a small effect on the computed solution.

In this sense, the Newton-Raphson method is judged to be a good

method.

I
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For a nonsingular matrix A, many iteration methods for

solving Ax = b for the vector x are described by the difference

equation (17)

Xk+ I = Bx k + c (17)

where the matrix B and the vector c are determined in some

fashion by A and b. For example 2 if A = Q + R, then B = -Q-IR

and c = Q-ib would be a possibility. B and c must have the

= Bx + c if and only if Ax = b. The iterationsproperty that x ° o o

xk will converge to the solution Xo if and only if p(B), the

spectral radius of B, is less than one. For a derivation of

several of these methods, see, for example, Kunz [i] or Hildebrand

[i]. Choose a vector norm Ixl such that IBI = k < i. Since

p(B) < i, this can always be done (see the Appendix).

Let x° be the desired solution and let xk = Xo + ek"

Then the ek satisfy the difference equation

ek+ I = Be k + h(k, ek)

where the term h(k, ek) represents the round-off errors committed

at step k. We assume that there exists positive constants I] and

¢ such that lh(k,e)l _- _ for all k and all e, l el < _.

Try the Liapunov function V(e) -- lel. Then
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AV(e) _- -(l-k)le I + E = W(e) -_ E

Then the set S is given by

S = [e " W(e) _- 0] = [e : lel & _ ]
l-k

E
and b = _ . The set A is given by

A = [e : V(e) m b + E] = [e : l el < _2-k ¢].
- - 1-k

2-k

If _ >_q-_ ¢, then we can choose

G = [e : V(e) < _} = [e : lel < n)

and Corollary 4 holds. Thus, if e I is in the set G, then the

solution will remain in G, will enter A after a finite number

of iterations, and will remain in A for all following iterations.

By looking at the set A_ we see that the ultimate

accuracy is given by b + ¢.

2-k

b+_= l-UX¢

We note that, if k is very nearly one_ then this ultimate accuracy

may be large even if E is small. For example, if k = l-G, then

I
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b + E = (c_-I + i)¢ m_ _/c_, and ¢/cz may be large. This indicates

that these iteration methods will give acceptable results only if

k = IBI is considerably less than one.

APPENDIX -- A THEOREM ON MATRIX NORMS. Let x be an n-vector and

x* its complex-conjugate transpose. Given some positive definite

matrix B, let the norm of x, Ixl, be defined by

Ix12 = x*Bx (A1)

Other vector norms are possible, but vector norms of this type are

all that are considered here.

Given a matrix A, the matrix norm of A, IAI, can be

defined in terms of the vector norm by

IAI = min [b : IAxl _- bl x[ for all x _ 0} (A2)

In addition to the usual properties of a norm, this matrix norm

satisfies the following.

a) IAxl _- IAl [xl

b) I£I S IA l for any eigenvalue

c) D(A) _-IAI

X, of A.

where p(A), the spectral radius of A, is the absolute value of

I
I
I
I

I

I
I

I
I
I

I
I

I
I

I
I

I
I



I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

16-31

-the largest eigenvalue of A.

THEOREM: Let A ° be a matrix with spectral radius a° = D(Ao).

For each a > ao, there exists a vector norm such that

ao <- IAol -m a (A3)

PROOF: This theorem is proven by considering the equation

2
iAoX i2 _ a21xle = x.(AoBAo_a2B)x = -a x*Cx _-0

where C is some positive definite matrix and

A*BA - a2B =-a2C (A4)
O O

For any positive definite matrix C_ let B be the

positive definite matrix defined by

co

-2kA*kcAk (Ag)B = _=0 a o o

Since a > a° = P(Ao) , this sum converges absolutely and B is

perfectly well defined. Furthermore_ this B satisfies equation

(A4) and can be used to define a vector norm as in (A1). With this

norm, we get

I
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or

IAoX 12 21 xl 2- a _-0

IAoXl_ alxl

From the definition of the matrix norm given in (A2), we get IAol _- a.

The other half of the inequality (AS) is a basic property of matrix

norms.

The significance of this theorem is that a vector norm

can be chosen so that the matrix norm of a matrix is made as close

to the spectral radius of the matrix as desired. If a° < i_ then

letting a = _(l+ao) < 1 leads immediately to the following

corollary.

COROLLARY. A necessary and sufficient condition for the spectral

radius ao of a matrix A ° to be less than one is that there exist

a vector norm such that the matrix norm of A ° satisfies IAol < 1.

It should be emphasized that the vector norm in the theorem

and corollary depends quite heavily on the matrix under consideration.

Given two different matrices A 1 and A2 both with spectral radii

less than one, there may not exist one vector norm so that both

IAll < 1 and IA21 < 1.

While the vector norm used satisfies all the requirements

of a vector norm_ it may be an "acceptable" norm. For example, the

"unit sphere" S = [x : Ixl = l] is an ellipsoid and the ratio of
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the longest axis to the shortest axis may be very high. Equation

(AS) almost never can be used to compute the matrix B and resort

must be made to solving (A4) directly for B. This may be a dif-

ficult task and it may be impossible to compute B to any desired

degree of accuracy. This means that it may be very difficult to

compute this norm of a vector.

This theorem and corollary are easily extended to cover

continuous linear operators in a Hilbert space.
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EXISTENCE, UNIQUENESS AND CONTINUITY

OF SOLUTIONS OF INTEGRAL EQUATIONS

by

Richard K. Miller and George R. Sell

i. INTORDUCTION. In this paper we shall be interested in the solu-

tions x(t) of a nonlinear integral equation of Volterra-type:

t

(i) x(t) = f(t) + I a(t,s)g(x(s),s)ds .
O

Our objective here is to present a number of theorems concerning the

existence, uniqueness and continuity of solutions of (i). Existence

and uniqueness theorems have been extensively studied. We note in

particular_ the following works: [2_3,6,7_8,10_iI, 14]_ as well as

the bibliography in M.A. Krasnosel'skii's book [6]. The basic

techniques for deriving existence and uniqueness criteria consist

of certain fixed points theorems (for example, the Schauder-Tychonoff

Fixed Point Theorem was used by C. Corduneau [2]) and comparison

theorems, (for example J.A. Nohel [8] and T. Sat_ [ii].) Our Theorem

i_ is an existence theorem. It is proved with the Schauder-Tychonoff

Theorem. Theorems 2 and 3 are existence and uniqueness theorems and

they are proved by the contraction mapping theorem.

As is well known_ equation (i) does include the initial-

value problem for ordinary differential equations
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(2) x'(t) = g(x(t),t)x(o) = x° ,

So the theory of the solutions of (i) includes that of (2).

One question which seems to have been overlooked by the

researchers in integral equations is: How does the solution x(t)

depend on the terms f(t), a(t,s) and g(x,t)? For ordinary dif-

ferential equations_ this question has been studied in an important

paper [ 4] by E. Kamke and this theory for ordinary differential

equations has been extended recently by Z. Opial [9]- We feel that

the most significant results in this paper are Theorems 4 and 5 which

say that the solutions x(t) of (i) depend continuously on the terms

f_ g and a.

2. PRELIMINARIES. Let W be an open set in Rn and I an open

interval in R containing 0. Let Ixl denote the Euclidean norm

on Rn.

HYPOTHESIS A. The function f is a continuous function on I with

values in W.

HYPOTHESIS Bp. Let p satisfy i _ p _ _ and let g(x,t) bea

measurable function defined on W X I with values

in Rn such that

(i) for each t, g(x_t) is continuous in x, and

(ii) for each compact set K C W and each compact

set J CI there is a measurable I real-valued function

I
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m(t) with

Ig(x,t)l _-re(t) , (xe K3 t e J)

and I m(t) pds < _ .
j

A function g(x,t) that satisfies Hypothesis Bp,

i _ p < _, is said to satisfy a Lipschitz condition if for every

pair of compact sets K, J (K C W_ J _ I) there is a measureable,

real-valued function k(t) with

Ig(x,t)- g(y,t)l _ k(t)Ix-yl , (x_y e K_ t ¢ J)

and " ""]jk(t)Pdt < o

For each interval J

i _- p < _ by

we define the Banach space

Bp(J) --Lp(J,R n) , (I--<P< °°) ,

where Lp(J,R n) is the Lebesgue space of all measurable functions

x defined on J with values in Rn with Ijl xl Pdt < _. We shall

let Bp(J) denote the adjoint spaces. By a well-known result one

_( Bq -i -ihas B J) -- (J) if 1 < p < _ and p + q -- 1.
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HYPOTHESIS C •
P

Let p satisfy i _ p < _ and let a(t,s) be___a

mappin 6 of I X I into the space Mn of linear

R noperators on such that

(i) for each compact interval J C I and each t

in I the mapping S : Bp(J) _ Rn defined by

S : x -_f a(t,s)x(s)ds
J

is a bounded linear mapping, and

(ii) the mapping t _ a(t,') is continuous in the

norm to_olog[ on Bp(J) n.

We shall say that a(t,s) satisfies Hypothesis Cp,

i & p < _ if the condition (ii) is replaced by:

(ii*) The mapping t -_ a(t,-)

the weak -topology on B j)n.

is continuous in

Hypothesis C and C* needs some explanation. If we
P P

consider the points in Rn as column vectors and the points in Mn

as square matrices_ then (i) can be reformulated as: for every t

in I, each row of a(t,-) is an element of B_(J). We then can

view a(t,.) itself as an element of the direct sum

B_(j)n:B_(J)÷ +B_(J_

I
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for every compact interval J C I. The weak*-topology, or the norm

on B_(J) n is induced, respectively, by the weak*-topology,topology,

or the norm topology_ on each component. It is clear that Hypothesis

C implies Hypothesis C*.
P P

or C* together with H_iders inequality,
Hypothesis Cp p,

Rnmeans that we can find norms on and M n so that

(2.p) }fja(t,s)x(s)ds I <--(fjla(t,s)lqds]I/q" [_jlx(s)iPds]l/p

-i -i
if i < p < _ and p + q = i; if p = I_

(2.1) l_ja(t,s)x(s)dsl _-lla(t,-)ll_ • _jlx(s)Ids

where

if t

lla(t,-)ll_ = ess. sup [la(t,s)l : s c J}.

The continuity of the mapping t _ a(t,-) implies that

is restricted to a compact set J' in I then the set

[a(t,.) : t E J'}

is a compact set in respectively, the norm topology_ or the weak*-

topology on B*(I) n. This means that

sup [_I a(t,s)l qds] <

tEJ'

!

I
I
I
I

I

I
I

I
I
I

I
I

I

I
I
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if

for

-i -i
i < p < _ and p + q = i, with a similar statement holding

q _ 00.

Also, the continuity of the mapping t _ a(t,-)

norm topology is equivalent to saying that

in the

Ijla(t+h,s) - a(t,s)lqds -_0 as h -_0

where q is given as above and a similar statement holds for the

case q = _. Continuity in the weak*-topology means that for each

x in Bp(J)

IIj[a(t+h,s) - a(t,s)]x(s)ds I -_0 as h -_0 .

With p satisfying i _ p < _ we define C = C(I,W) as

the collection of all functions f

as the collection of all functions

and Ap_ or A_3 as the collection of all functions

Hypothesis Cp_ or C_, respectively.

We introduce topologies on C, Gp, A andP

On C

that satisfy Hypothesis A_ Gp

g that satisfy Hypothesis Bp_

a that satisfy

A* as follows:
P

we shall use the topology of uniform convergence on

compact sets. This topology is metrizable. For a discussion of this

cf. G.R. Sell [13].

that

On Gp we define two topologies Tc and Tbo We say

gn _ g in T c if for each compact interval J _ I and each

I
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compact set _C C(J,W)

Lp(J,R n) to g(x(-),')

We say that

J C I and every compact set

converges to g(x(-),.) in

where

the sequence [gn(X(-),-) ] converges in

with convergence uniform for x(.) c _.

gn -_ g in Tb if for every compact interval

K CW the sequence [gn(X('),')]

Lp(J,R n) uniformly for x c

= C(J,K) = [x c C(J,Rn); x(t) c K for all t c J].

The difference between the two topologies T c and Tb

can easily be seen in the case W = R n. For both topologies we

have the defining condition

sup Ijlgn(X(t),t)-g(x(t),t)iPdti' -_0 ,
x_

as n _ _. For T the set _/_ is required to be compact while for
C

T b the set _ is required to be bounded. The topology T b is

meterizable and T is a uniform topology.
c

On Ap or A*P we say that a sequence [an] converges

to a limit a if for every compact interval J C I; the sequence

Inn(t," )] converges to a(t,-) in the norm or respectively the

weak*-topology on B_(J) n uniformly for t c J.

We are interested in the existence_ uniqueness and con-

tinuity of solutions of x(t) of the integral equation

I
I
I
I
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t

(3.P) x(t) : f(t) + f a(t,s)g(x(s),s)ds .
O

We say that x(t) is a solution of (3.P) if it is measurable,

satifies (3.P) on some interval [O,G) and is bounded on compact

sub-intervals of [0,(_). Before giving the main results, let us

make note of a few lemmas.

LEMMA i. Let f e C, g e Gp and a e A* i <_ P _ = p < _. If there

exists a solution x of (3.P) on the interval [0,_),

then x is a continuous function.

PROOF. Consider the case where i < p < _. (The proof for the

case p = 1 differs only in the form of some of the equations.)

Then if t and t+h are in [0,_) one has

t

Ix(t+h) - x(t)l <--If(t+h) - f(t)l + If [a(t+h,s) - a(t,s)]g(x(s),s)ds I

O

t+h

+ If a(t+h, s)g(x(s), sldsl
t

= Il+ I2+ 13

I I -_0 as h _0 since f is continuous. Also 12 -_0 as h _0

since a(t,.) is continuous in the weak*-topology on BS(I) n. By

Hypothesis Bp, there is a function m such that

t+h 1 t+h --i t+h 1

13 _- If la(t+h,s)lqds]P[f m(s)Pds] p _- B[f m(s)Pds] p
t t t

I
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where

i

sup [f la(t+h,s)lqds} q

O__t__ o

for

that

0 _ t_ t+h _ _ < G. It follows from the integrability of mp

13 _ 0 as h _ 0, which completes the proof.

LEMMA 2. Let x(t), 0 <--t -_(_, be a solution of (3.P) and let _(t),

0 <- t _- _ be a solution of

(4.p)

t

_(t) -- f(t) + f a(t+G,s+(%)g(_(s),s+(_)ds ,

O

where

(%

f(t) = f(t+G) + I a(t+_,s)g(x(s),s)ds .

o

Then

x(t) :I x(t) ' 0 G t _

t_(t-_) , _ _ t _ G+_

is a solution of (3.P) on 0 <- t < G+_.

The proof of this is straight forward and we omit the details.
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3. EXISTENCE AND UNIQUENESS. In this section we state and prove our

main results on the existence and uniqueness of solutions. The

first theorem is an existence theorem. It also contains the general-

ization of H. Kneser's [5] theorem to integral equations. The

question of continuous dependence on f_g and a is treated in the

next section.

THEOREM i. Let f _ C, g c Gp and a c Ap, i _- p _ _.

(A) Then there exists an interval [O,_), _ _ O, and

a continuous function x: [0,_) -_W such that (3.P)

is satisfied for 0 _= t < _.

(B) If [0,_) denotes the maximal interval of defini-

tion of x (which means that the solution x cannot

be continued to the right of _)_ then either _ is a

boundary point of I or x(t) _bdy W as t _.

(C) There is an & > 0 such that for each t, 0 _ t < 6,

the cross-section

Kt -- [y _ W: y = x(t) wher_.__e

(3.p)_

x is some solution of

is compact. Moreover _ can be chosen to be maximal in

the sense that _ _ _ wher____e_ is given by (B) for some

solution x.

I
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PROOF. We shall give an argument for the case where i _ p _ _.

The proof for the ease p -- i differ from this only in the form

of some of the equations.

The first part of the theorem is an existence theorem.

We shall prove this by using the Schauder-Tychonoff Fixed Point

Theorem.

Let _ _ 0 be fixed such that [0_] C I. Define the

operator T formally by y --Tx where

t

y(t) = f(t) + f a(t,s)g(x(s),s)ds

O

We want to show that T has a fixed point.

Since f is continuous it is bounded on 0 -< t -< _I so

there exist constants M > 0 and e > O so that

If(t)l _ M , (0 _ t _ _),

and the compact set

K -- [y " I f(t)-y I __ c for some t, 0 _= t -_ 6]

lies in the open set W. Let C([0,_],W) denote the space of

continuous functions defined [0_] with values in W and let

D[0,8] denote the subset of C([O,_],W) of those functions x

I

I

I
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I
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that satisfy

If(t) -x( t) l <- e , (0 < t _ 6)

D[O,8] is a closed convex set in the Banach space C([O,_],Rn).

We shall now show that there is a 8', 0 < B' m_ 8, such that T

maps D[O,_' ] into itself.

First we define

B "

1

sup (f ia(t,s)i qds) q

O_t_-6 o

-1 -1
where p + q = 1.

such that

By Hypothesis B there is a function m
P

Ig(x,t)l _-m(t) ,

f_mPdt < _ .

.0

(x e K, 0 _- t _- _),

Now choose _' O < _' m _ so that,

I
IB'

B(I mPdt) p _-¢ •

0

We then claim that T maps D[O,6'] into itself. Indeed, if

x c D[O,8'] and O _- t _- _' then by (2.p) we get

I
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IY(t)-f(t)l

t

: I_ a(t,s)g(x(s),s)dsl

O

i i
t -- t --

-<-[I la(t,s)lqds]q[I Ig(x(s),s)IPds] p

o 0

1
t

_- B[I m(s)Pds] p <--e ,

O

hence y c D[0,8'].

Now we shall show that T is compact. For this purpose

it suffices to show that the set of functions T(D[O,_']) is

equi-continuous. Let t be fixed with 0 t 6' and let

> 0 be given. Then

ITx( t+h) -Tx( t)l

t+h

<--If(t+h)-f(t)l + If a(+h,s)g(x(s),s)dsl

t

t

+ If [a(t+h,s)-a(t,s)]g(x(s),s)dsl
o

i i
•t+h -- t+h --

If(t+h)-f(t)l+[I la(t+h, sllqdsl}q[l_ Ig(x(s),s)IPdsl] p

t t

i i
t -- t

+ [f la(t+h,s)-a(t,s)lqds]q[f Ig(x(s),s)IPds] _

O o

i
t+h

__ If(t+h)-f(t)l + B{II m(s)Pdsl] p

t

i i
_' - B' -

+ [I la(t+h,s)-a(t,s)lqds}q[f m(s)Pds} p •

O O

Now choose 5 > O so that if lhl <--5 then

I
I
I
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If(t+h)-f(t) I _-

i
t+h

Bif m(slPdslp _-
t

1 i
_' - _' -

{f la(t+h),s)-a(t,s)lqds]q{f m(s)Pds] p __ c .

O O

Note that 5 depends on t and _ but it is independent of the

function x. It follows then that

ITx(t+h)-Tx(t)l _-3_

which shows that T is compact.

Now we shall show that T

a sequence in D[O,_'] with limit

g(x,t) in x we get

is continuous. If [Xn] is

x, then by the continuity of

g(Xn(S).,s ) -_ g(x(s),s)

for each s, 0 <- s <= 6', and

a(t,s)g(Xn(S),S) -_A(t,s)g(x(s),s) .

Furthermore, the sequence [a(t,s)g(Xn(S),S)] is bounded by an

integrable function,

I
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la(t,s)g(Xn(S),S)l <_-la(t,s)Im(s) ,

hence by Lebesgue' s Theorem

t t

f a(t,s)g(Xn(S),s)ds -_f a(t,s)g(x(s),s)ds
0 0

This implies that for each t, 0 m- t __ _', one has

(5) Txn(t ) -_Tx(t) as n -_ .

In order to show that T is continuous we must show that the

convergence in (5) is uniform. However, this follows easily

from the fact that Tx is continuous and the set [TXn] is

equi-continuous.

We have thus shown that T is a compact, continuous

operator_ therefore by the Schauder-Tychonoff Fixed Point Theorem,

cf. Cronin [3;P. 131], T has a fixed point x.

Let us now show that the maximal interval of definition

[0_5) is characterized in the form described in the theorem.

Proceeding by contradiction, assume that 5 is not a boundary

point of J and that x(t) remains in a compact set K C W for

0 _ t < 5. We will then show that there is a solution _(t) of

(i) defined on an interval [0#5') where 5 < 5' and such that

_(t) = x(t) for 0 _ t < 5. This will contradict the maximality

I
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of [O,G).

The first step is to show that lim t __czx(t) exists,

we shall call this limit x(G). The limit exists if for every

> o there is a _, 0 < • < _ suchthat Ix(t)-x(u)l _ _ for

all t and u with • _- t <G, t _- u < _.

By Hypothesis Bpj there is a function m such that

Ig(x,t)l _ re(t)

f mPds < _ .

0

(x e K, 0 _ t & _) ,

If ¢ _ t & u <_, then

t

Ix(u)-x(t)l _-If(u)-f(x)l + If {a(t,s)-a(u,s))g(x(s),s)dsl
o

U

+ If a(u,s)g(x(s),s)dsl ,
t

-_ I f(u)-f(t)l

1 1

+ {f Ia(t,s)-a(u,s)lqds]q{f m(s)Pds} p

0 0

1 1
G -- CE --

+ {.r I a(u,s)lqds}qcI m(s)Pds} p .
0 T

Thus our assumptions clearly imply that if ¢ _- t <= u < G and

_-V is sufficiently small, then Ix(u)-x(t)l< e. Thus we see

that x(t) is a solution of (3.P) on the closed interval [0,_].
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Now by applying the previous existence proof with Lemma

2, we conclude that the solution x can be continued for O _-

t _-_+_, _ > 0, and this contradicts the maximality of [0,_).

The proof that the cross-sections are compact is simple

modification of Kneser' s Theorem for ordinary differential equations,

of G.R. Sell [12, p. 373]. The critical thing to show is that if

[Xn] is a sequence of solutions of (3.P) that converges uniformly

on compact sets to a function x, then x is a solution of (3.P).

This, however, is a direct application of the Lebesgue Dominated

Convergence Theorem, which completes the proof. The fact that

is maximal in the sense indicated can also be proved with the

same techniques, cf. [12; p. 382].

REMARKS. 1. As noted in the Introduction, the Schauder-Tychonoff

Fixed Point Theorem has been used before to get existence criteria

for integral equations. See, for example, [2,3,6]. The fact

that the maximal interval of definition is characterized by

Statement (B) has been proved by essentially the same argument

but under more restrictive conditions by J.A. Nohel [8]. Finally

a special case of (C), which generalizes Kneser's Theorem, has

been proved by T. Sat_ Cll].

2. Our argument does break down if we replace the

Hypothesis Cp for a(t,s) be the weaker Hypothesis Cp. The

only place where the stronger hypothesis was used to show that

the operator T is compact. We have no counter example to show
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that Theorem i is false under the weaker hypothesis on a(t,s).

In order to get uniqueness of solutions, we impose a

Lipschitz condition on g.

THEOREM 2. Let
f c C, g c Gp, a e Ap, i _- p < _, and assume that

g satisfies a Lipschitz condition. Then the solution

x of (3.P) is unique.
J

Actually, if g satisfies a Lipschitz condition, then

we can relax the assumption on the kernel a and ask that it

satisfy Hypothesis C*. Theorem 2 is then a special case of the
P

following result.

THEOREM 3. Let

that

f c C, g c Gp and a c A_, i _- p < _, and assume

g satisfies a Lipschitz condition. Then there

exists one and only one solution of (3.P). Further-

mor____e,the maximal interval of definition is character-

ized by (B) of Theorem 1.

The proof of this is completely straightforward.

proves, by the usual arguments, cf. [8]_ that the operator T

a contraction on some set D[0,_"]. We omit the details.

REMARK. One can replace the Lipschitz condition on g with a

weaker statement. For example, one could replace it with the

Osgood condition:

One

is

I
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Ig(x,t)-g(y,t)l _- k(t)_(Ix-yl)

(_ dr
where f _ = + co. Comparison theorems of this type are well-

o ,(r)
known for differential equations and they have been used for

integral equations, cf. [8,11].

4. CONTINUITY OF SOLUTIONS. In this section we investigate the

dependence of the solutions x on the three terms f,g and a.

THEOREM 4. LeNt [fn], [gn] and [an]

and A respectively where
p

these sequences have limits

and

be sequences in C, Gp

i G p < _. Assume that

fn _f' _n _ g(i_ Tc)

an _ a in the respective spaces. _Let [Xn] mbe

a sequence of solutions of

t

(5.P) Xn(t) = fn (t) + f an(t,S)gn(Xn(S),s)ds ,
0

on the maximal intervals [O,_n). Then the sequence

[Xn] has a uniformly convergent subsequence on some

interval O <- t <- q, q > O. The limit function

a solution of the limiting equation

x is

t

(6.p) x(t) = f(t) + f a(t,s)g(x(s),s)ds .

o

I
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Moreover, the subsequence [Xnj ] of [Xn] may be

chosen so that Xnj(t ) _ x(t) as j _ _ uniformly

on compact subsets of [0,6), where the interval [0,6)

is the maximal interval on which the cross sections

Kt of (6.p) are compact (see Theorem l(C)) and

[0,6)c lira i_f [0,%).

PROOF. We will show that for any

1. [0,_] _ [O,_n) for n

2. on the interval [0,_]

1

with 0 < _ < _, one has:

sufficiently large;

the sequence of functions (Xn]

bounded and equicontinuous; and

if

x(t)

is

[Xnj ] is a convergent subsequenee of [Xn} with limit

on [0,_], then x(t) is a solution of (6.p) on [0,_].

Again we shall prove this for the case I < 0 < _. The

proof for the case p = i is similar.

Let _, 0 _ 8 < _, be given where

hypothesis. Then the cross section

is given by the

Kt = [y e W; y = x(t) for some solution x of (6.p)]

is a compact subset of W for 0 & t _ _. It is easily show that

=U(Kt; 0_t _)

is a compact subset of W, cf. e.g. [12, p. 378 ]. Let K be a
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compact set in W that contains K in its interior.

Bp there is a function m e Lp[O,_] such that

By hypothesis

Ig(x,t)l _-re(t) (x e K, 0 _- t _- _)

as n-_

The convergence gn _ g

where

in T implies that lim 8 = 0
c n

= sup f Ign(X,s)-g(x,s)IPdsn
xeK o

Furthermore if 0 G a _ 8, then

1 1

(fI_n(X,s)i_ds_p _ {fIgn(_,s)g(x,s)IPds}p
o o

i

___ + [_ m(s)Pds} pn
o

1

+ Ifm(s)Pds}p
o

For _ in the interval [0,_] set

(7)

1

M(_,n) = _ + {_ m(s)Pds) p
n "

o

Similarly we can find a common bound for the sequence

[an] , that is

(8) B = sup [ sup {f lan(t,s)lqds} _] <_,
n O_-t_-B e

I
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I

I

-i -i
where p + q = i. Note that the bound B in (8) also holds

for the limiting function a(t_s).

By the choice of the set K, there is an _ > 0 such

I

I

that if x(t) is any solution of (6.p), 0 <- t <= _, and ly-x(t)l <-

then y ¢ K. Fix 5 so that 0 < 5 < g/2 and fix N1 m 1 so

that if n -_ N 1 then 2B_ n < 5 and

I
Ifn(t)-f(t)l < 5 . (0 _- t _ _ n _ NI)

I Now choose a so that 0 < a <= _ and

| _ __
2B(Sm(s)Pds}p : e - 25

! o

I

I

I

I

If this equality cannot be satisfied for 0 _- _ --<_ then choose

=8.

We will now show that on the interval [03q ] one has

Xn(t ) ¢ K for all n _m N1" Let x(t) be any solution of (6.p)

defined on [0,_]. We shall show that IXn(t)-x(t)l <--8 for

0 <- t <--q and n _-N I. For t = 0 we have

I IXn(O)-x(o)l -- I _n(o)-f(o)[ < 5 < e .

I Suppose IXn(t)-x(t)l _-_ for 0 _- t < _ _- q. Then

I

I

I
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IXn(_)-x(_)l _- Ifn(_)-f(_)l + If an(t,S)gn(Xn(S)'s)dsl
• O

+ If a(t,s)g(x(s),s)dsl

O

Applying (2.p), (7) and (8) we see that

__ 5 + 2B M(_2n ) < g •

Hence the maximal interval [0_] for which Xn(t ) e K if

0 & t < _ must include [03_].

We shall now show that on the interval [O_a]_ the

sequence of functions [Xn; n _ N I] is equicontinuous. If

0 _ t_ t+h _ oj then

IXn(t+h)-xn(t)l <= Ifn(t+h)-fn(t)l

t

+ If [an(t+h,s)-an(t,s)]gn(Xn(S),s)dsl
O

t+h

+ If an(t+h, slgn(Xn(S),sldsl ,
t

i
t+h

__ Ifn(t+h)-fn(t)l + B[f m(s)Pds] p
t

i

+ [f Ian(t+h,s)-an(t,s)l qds] q M(a,n) .
O

I
I

I
I
I

I
I

I
I
I

I
I

I
I

I
I
I

I
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I

I
I

I
I

I

Since fn -_ f uniformly on [0,0], the sequence {fn]

is equicontinuous. Since an(t," ) -_ a(t,-) uniformly in

t ¢ [0,0], it follows that the sequence [an] is equicontinuous

as functions of t with values in Bq[O,_] n. Since B is a

fixed constant and M(q,n) is bounded in nj we see that

{Xn; n -_ N1} is equicontinuous on [0,0].

Now choose any convergent subsequence of Ixn]. To

simplify the notation we shall write [Xn] for this subsequence.

Then there is a function x such that Xn(t ) -_ x(t) uniformly

on [0,0]. Since

I

I < : _x,x_,x_,x_,..._,

I
I

is a compact set in C([O,_],W) and

that

gn(Xn('),') -_ g(x(-),-)

gn -_ g in Tc it follows

I
in Lp([O,q],Rn). Also we have

I

I

I
I

an(t, ") gn(Xn(-), •) -_ a(t,.)g(x(-), -)

in LI([0,s],R n) for 0 _- t _-q. Thus

t t

f anCt,s)gnCxn(S),S)ds -*f aCt,s)gCx(s),s)ds .
0 0

I

I
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It follows that x(t) satisfies (6.p) on [0,0].

We now want to show that the interval [0,0] can be

extended to [0,8]. This extension can be performed in a finite

number of repetition of the above argument. That is, consider

the translation of (6.p) given by

t

(9-P) X(t) = f(t) + I a(t+q ,s+q)g(X(s),s+q)ds

o

A

where f(t) : f(t+_) + f a(t+G,s)g(x(s),s)ds. Equation (5.P) is

O

similarly translated. By the above argument one can find a

> 0 such that a subsequence of the solutions [Xn(t)] converge

to a solution X(t) of (9-P) on [0,_]. By Lemma 2, we see that

= _x(t)

x(t) _X(t-_)

is a solution of (6.p) on [0,_+_], and it is the limit of a

subsequence of [Xn(t)] on 0 _= t _- _+_.

This process can now be repeated. In order to show that

one can extend to [0,_] in a finite number of steps, it is neces-

sary to keep track of the size of each step. This is governed by

the function M(_,n) defined above. That is, the number • can

be chosen so that 0 < v _- _-_ and

1

2B[I m(s)Pds] p = 8- 25

I
I

I
I

I
I

I
I
I

I

I
I
I

I

I
I
I
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I

I
i

I
i

or if this last equality cannot be satisfied then set • = _-_.

Since the integral f_m(s)Pds is finite_ it is clear that one can
O

extend [O3_ ] to [O_] in a finite number of steps. This completes

the proof of Theorem 4.

In the last theorem above we assumed that the kernals

[an(t,s )] and the limiting kernal a(t,s) satisfy Hypothesis C
P

and that an _a in the norm topology 3 uniformly for t on compact

sets J C I. One can ask whether the weaker convergence would

I
I

l

suffice. The answer is yes if one strengthens the convergence on

{gn ] . More precisely we prove the following result:

THEOREM 5. Let [fn],[gn] and Jan] be sequences in C, Gp and

A* respectively where i _ p < _ Assume that the
p

I sequences have limits fn -_ f' gn -_ g (i___nTb) an_d

an-_a (in A_) with f,g and a in the respective

i spaces. Assume further that gn and g satisfy

Lipschitz conditions. Let x be the solutions of
nI

I
t

(5.p) Xn(t ) -- fn(t) + f an(t,S)gn(Xn(S),s)ds ,
O

I

i

on the maximal intervals [0,_n) . Then the sequence

[Xn] converges uniformly on compact subsets of [0,(_)

to a function x(t). The function x(t) is the unique

I solution of the limiting equation

I

I
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t

(6.p) x(t) = f(t) + f a(t,s)g(x(s),s)ds
O

defined on the maximal interval

(_ _- lira inf (_ (n -_).
n

[0_). Moreover_

PROOF. For any 8, 0 < _ < (_, we shall show that Gn -_ _ for n

sufficiently large and that Xn(t ) -_ x(t) uniformly on [0,_].

This will prove the theorem.

Fix and _ g [O/_). Let K be a compact subset of W

that contains the curve x(t): 0 <- t < 8 in its interior. Let

m e Lp([O,_],R n) with

Jg(x,t)l <=re(t) . (x e K, 0 _ t _- B)

Since the kernals an(t," ) converge to a(t,.) in the

weak*-topology on Bq[0_]n_ they are bounded in the norm topology.

Furthermore since the convergence in uniform for t on compact

sets 3 the number B defined by

1

B : sup { sup If lan(t,s)lqds] q }
n O_t_ o

is finite. Let M(a,n),¢, 5, N I and a be defined as in the first

part of the proof of Theorem 4.

Instead of showing the equicontinuity of [Xn}

we proceed directly to estimate IXn(t)-x(t)l. Define

on [0,0]

Rn(t) by

I
I
I

I
I
I

I

I
I
I

I
I

I
I

I
I
I

I
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t

Rn(t) = Jfn(t)-f(t)l + I Jan(t,s)Jlgn(Xn(S),s)-g(Xn(S),s)Ids
0

t

+ If [an(t,s)-a(t,s)}g(x(s),s)dsJ
O

and let _ = sup (Rn(t); 0 _- t _- 0].n

assumptions on {fn),[an] and [gn ]

for 0 _- t _- o 3 n _- N I one has

Because of the convergence

and the fact that x (t) e K
n

-*0 as n -*co .
n

Since g satisfies a Lipschitz condition 2 there is a function

k(t) e L ([O,_],R n) such that

Jg(x,t)-g(y,t)J _- k(t)Jx-yJ . (x,y e K, 0 _- t _- _)

By a straight forward computation we get

t

Xn(t)-x(t)l _-Rn(t) + f lan(t,s)llg(Xn(S),s)-g(x(s),s)l ds
0

t

-_8n + f k(s)lan(t's)JJXn(S)-X(S)Ids "
0

By Gronwall's inequality [i] we get for all n _- N I and for

0__t<_o

+5IXn(t)-x(t)J _- _n n

t t

I k( s)J an(t,s)l ( exp I k(r)l an(t,r)J dr)ds .
0 s

I
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If we define

i

K l_f_(s)ds]p= #
0

0

then for 0 _- t _-

IXn(t)-x(t) __ 8n(l+ KoB exp (KB)) -_0

This shows thatas n -_ _.

One can extend [O,_] to [0,6]

used in the proof of Theorem 4.

Theorem _.

REMARKS.

i. The assumption that the limit function

Xn(t ) _ x(t) uniformly for 0 _ t _ G.

by the same reasoning process

This completes the proof of

g(x,t) satisfies a

Lipschitz condition can be weakened. One could use an Osgood con-

dition or a comparison theorem used by J. Nohel [8] or T. Sat_

[ii]. Howeverj it does not appear that in Theorem 5 one can drop

this type of analytical criterion 2 which implies uniqueness_ and

assume directly that the solutions are unique.

2. It should be noted that E. Kamke's Theorem [4] on the continuity

of solutions of ordinary differential equations_ as well as Z. Opial's

generalization [9] are included as special cases of Theorem 4. In

these papers the kernal a(tjs) reduces to the identity matrix.

Ksmke assumed that the functions gn(X,t) and g(x,t) were con-

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I



_7-31

tinuous and that gn _ g uniformly on compact sets. This con-

vergence implies gn -_ g in Tb for every space Gpj 1 _- p _ _.

0pial assumed that the functions gn and g satisfied Hypothesis

B1 and gn -_ g in Tb for p = 1.

3- Many variations of our theorems are possible. For example

suppose we set p = _ and q = 1. Here we assume g to be con-

tinuous in (t,x) and gn -_ g means uniform convergence on

compact sets. Suppose now that a satisfies the following con-

ditions-

(i) for each compact iterval J C I and each t c I the

Rnmap S" C(J,W) -_ defined by

s :x * f a(t,s)x(s)ds
J

is a bounded linear functional_

(ii) the mapping t _ a(t,-) is continuous in the norm

topology on Bl(J), and

(iii) for any compact set J C I,

t+h

lim f la(t,s)Ids = 0

h-_O t

uniformly for t _ J.

Under these conditions on g and a 3 the obvious varia-

tions of Theorems 1 through 5 are true. We omit a formal statement.
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4. Continuity results of the type given by Theorem5 have been

obtained by Levin and Nohel [ 15] in a special_ scalar example.
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